
Interdisciplinary Journal of Information, Knowledge, and Management Volume 5, 2010

Editor: Eli Cohen

Secure Software Engineering: A New Teaching
Perspective Based on the SWEBOK

Manar Abu Talib
Zayed University,
Abu Dhabi, UAE

manar.abutalib@zu.ac.ae

Adel Khelifi
Al Hosn University,

Abu Dhabi, UAE

a.khelifi@alhosnu.ae

Leon Jololian
Zayed University,
Abu Dhabi, UAE

leon.jololian@zu.ac.ae

Abstract
Lack of a suitable set of controls during the development life cycle of software will lead to mis-
takes in the requirements, design, or code of software and, therefore, result in significant security
vulnerabilities. This paper proposes a software engineering course from the security perspective,
which can be taught at both the undergraduate and graduate levels. It will prepare students to suc-
cessfully cope with the technical challenges as well as the non technical issues associated with the
software development process, while integrating security into each phase of the process. The
course materials are derived from the Guide to the Software Engineering Body of Knowledge
(SWEBOK) published by the IEEE Computer Society with the support of a consortium of indus-
trial sponsors.

Keywords: Security, Software Engineering, SWEBOK, ISO 19759, Curriculum.

Introduction
Many authors (Graff & Van Wyk, 2002; Howard, 2005; Howard & LeBlanc, 2002; Lipner &
Howard, 2005; Microsoft, 2009; Shumba, Walden, Ludi, Taylor, & Wang, 2006; Walden &
Frank, 2006; Viega & McGraw, 2002, Viega & Messier, 2003) have discussed integration of the
concept of security into the software life cycle; however, none of them has done so within the
framework of the Software Engineering Body of Knowledge (SWEBOK). Moreover, from an
academic point of view, few university software engineering courses or textbooks incorporate
guidelines and practices related to “secure” software engineering. Most focus on securing only
one phase of the development process, which is coding (Graff & Van Wyk, 2002; Howard &
LeBlanc, 2002; Viega & Messier, 2003). From an industry point of view, current surveys indicate
that we are far from being able to develop acceptably secure software systems, CERT (CERT,
2003; PricewaterhouseCoopers, 2004) having reported over 5,000 software vulnerabilities in
2005. One of the main reasons for this is that software engineers do not always have a strong
background in computer security and lack expertise in secure software system development. In

spite of this, in practice, they are asked
to develop software systems that call for
security features. Without appropriate
methodologies and modeling languages
to guide them during the development
process, it is likely that they will fail to
produce effective solutions (McDermott
& Fox, 1999).

Articulating a body of knowledge is an
essential step in the development of a

Material published as part of this publication, either online or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies: 1) bear this notice
in full; and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or post on a server, or to
redistribute to lists, requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

mailto:manar.abutalib@zu.ac.ae�
mailto:a.khelifi@alhosnu.ae�
mailto:leon.jololian@zu.ac.ae�
mailto:Publisher@InformingScience.org�

Secure Software Engineering: A New Teaching Perspective

84

profession because it represents a broad consensus regarding the contents of the discipline. The
IEEE Computer Society, with the support of a consortium of industrial sponsors, has published
the Guide to the Software Engineering Body of Knowledge (SWEBOK). It has also gained inter-
national recognition as ISO Technical Report 19759. Although the concept of security is not ex-
plicitly referred to in it, the Guide describes generally accepted knowledge about software engi-
neering, and its ten knowledge areas summarize basic concepts and include a list of references to
detailed information. This paper takes from the Guide a summary of the guidelines and practices
that can measurably reduce software requirements, as well as design and implementation defects,
and improve the education of current and future software developers.

Our paper introduces a new way of teaching secure software engineering based on the SWEBOK
Guide. This work differs from others by the following outcomes:

• The topic of security will be highlighted through the SWEBOK Guide.

• The summary of guidelines and practices are derived from the SWEBOK Guide to secure
requirements analysis, design, implementation, and testing phases

• The proposed topics to be covered in the course during the academic term are provided
based on the SWEBOK Guide.

Differences between our work and that of others are more detailed in the Literature Review sec-
tion. The paper summarizes the guidelines and practices derived from the SWEBOK Guide in the
Proposed Guidelines and Practices based on SWEBOK section. In the Proposed Course Topics
section, it describes the detailed topics to be covered during the academic term, and in the section
Suggested Recommendations to Enhance SWEBOK Guide we recommend some possible addi-
tions for SWEBOK 2010. The conclusions and our plans for future work are introduced in the last
section.

Literature Review
Many authors have discussed the integration of security into the coding phase of the development
process (Graff & Van Wyk, 2002; Howard & LeBlanc, 2002; Microsoft, 2009; Viega & McGraw,
2002, 2003). Howard and Leblanc (2002) described the best practices for writing secure code and
stopping malicious hackers in their tracks, based on the knowledge of top security experts at Mi-
crosoft. Few university software engineering courses or textbooks have incorporated any secure
software development topics into their courses. Frank, Walden, and Shumba (2006) provide valu-
able contributions to the design of a course in secure software engineering that will teach students
how to incorporate security throughout the software development life cycle. For instance, Frank
et al. introduced ten modules to cover the core topics in software security. Each module covers
one or more class goals and will include both explanatory materials and assignments to give stu-
dents the opportunity to apply their learning in a small context. The ten modules are: What is
software security?, Threats and vulnerabilities, Risk management, Security requirements, Secure
design principles and patterns, Secure programming through data validation, Secure programming
through using cryptography securely, Code reviews and static analysis, Security testing, and, fi-
nally, Creating a software security program. It also explains the possibility of incorporating a
team-based Web development project that students will work on throughout the semester to gain
experience in applying security principles to a large-scale project.

The contribution of Shumba et al. (2006) to teaching on the secure development life cycle is illus-
trated in terms of the challenges and practices that have been introduced into the software engi-
neering curriculum at five different universities. Each phase of the software development life cy-
cle has been modified to incorporate security at one university at least. Shumba et al. provided a
survey of practices involved in the secure development life cycle and described how these prac-

 Abu Talib, Khelifi, & Jololian

 85

tices can be introduced into the software engineering curriculum. Each contributor discusses his
or her experiences and challenges while integrating a specific stage of the life cycle in a single
course. Secure requirements analysis, design, implementation, and testing practices were incorpo-
rated into a variety of courses, including a single-semester software engineering course, a secure
analysis and design course, a secure coding course, and two courses on secure embedded systems.

Articulating a Body of Knowledge is an essential step in the development of a profession because
it represents a broad consensus regarding what a software engineering professional should know.
Without such a consensus, no licensing examination can be validated, no curriculum can prepare
an individual for an examination, and no criteria can be formulated for accrediting a curriculum.
The development of the consensus is also a prerequisite to the adoption of coherent skills devel-
opment and continuing professional education programs in organizations (Abran, Moore, Bour-
que, Dupuis, & Tripp, 2004). Therefore, this paper is proposing a course that can be taught at
both the undergraduate and graduate levels based on such a broad consensus regarding what a
software engineering professional should know.

Redwine (2006) has identified the additional body of knowledge necessary to develop, sustain,
and acquire secure software beyond that normally required to produce software and ensure its
quality. He picked a set of generic categories mapped to the categories used in a number of stan-
dards, curricula, and body-of-knowledge efforts. These are quite close to the categories used in
the SWEBOK Guide – see Table 1.

Table 1: Comparison with the SWEBOK Guide (Samuel T. Redwine, 2006)

SWEBOK Guide Software Assurance Document

 Threats and Hazards

 Fundamental Concepts and Principles

 Ethics, Law, and Governance

Software Requirements Secure Software Requirements

Software Design Secure Software Design

Software Construction Secure Software Construction

Software Testing Secure Software Verification, Validation and Evaluation

Software Quality portions of Secure Software Engineering Management

Software Engineering Tools and Methods Secure Software Tools and Methods

Software Engineering Process Secure Software Processes

Software Engineering Management Secure Software Engineering Management

 Acquisition of Secure Software

Software Maintenance Secure Software Sustainment

Software Configuration Management portions of Secure Software Engineering Management

What is the SWEBOK GUIDE?
The Guide to the Software Engineering Body of Knowledge (SWEBOK) (Abran et al., 2004) was
established to promote a consistent view of software engineering worldwide. The build-up of a
consistent worldwide view of software engineering was supported by a development process
which engaged approximately 500 reviewers from 42 countries in the Stoneman phase (1998–

Secure Software Engineering: A New Teaching Perspective

86

2001), which led to the Trial version, and over 120 reviewers from 21 countries in the Ironman
phase (2003), which led to the 2004 version. That also helped provide a foundation for curricu-
lum development, as well as for individual certification and licensing material.

Another objective of the SWEBOK Guide was to set a boundary for software engineering with
respect to other disciplines, such as computer science, project management, computer engineer-
ing, and mathematics. The material that is recognized as belonging to this discipline is organized
into the ten Knowledge Areas (KAs) listed in Table 2. Each of these KAs is treated as a chapter in
the Guide.

Table 2: The SWEBOK Knowledge Areas (KAs) (Abran et al., 2004)

SWEBOK Knowledge Areas

Software requirements
Software design
Software construction
Software testing
Software maintenance
Software configuration management
Software engineering management
Software engineering process
Software engineering tools and methods
Software quality

In establishing a boundary, it is also important to identify what disciplines share that boundary
and, often, a common intersection with software engineering. To this end, the Guide also recog-
nizes eight related disciplines, as listed in Table 3 (Abran et al., 2004).

Table 3: The SWEBOK Related Disciplines (Abran et al., 2004)

Computer engineering
Computer science
Management
Mathematics

Project management
Quality management
Software ergonomics
Systems engineering

The challenges inherent in teaching secure software engineering are time limitations, lack of text-
books, and the immaturity of secure development methodologies and tools. However, the SWE-
BOK guidelines and practices for secure software development can be used without extensive
alteration of the software engineering curriculum by selecting case studies and projects that have
security relevance.

To the best of our knowledge, none has introduced the clear link between security and SWEBOK
Guide in order to produce the secure software engineering course guidelines and practices. It is
also to be noted that the following assumptions are made in order to run the secure software engi-
neering course:

• The course is 14 weeks. Secure Software Maintenance is not covered in the course.

• Prerequisite courses such as introduction to software engineering and programming I are
recommended for this course.

 Abu Talib, Khelifi, & Jololian

 87

The Proposed Guidelines and Practices
based on SWEBOK

The current SWEBOK Guide can serve as a reference for a secure software engineering course.
The course overview is illustrated in Figure 1. The breakdown of the course constitutes the same
first five Knowledge Areas described in the SWEBOK Guide, describing the decomposition of
each Knowledge Area into subareas and topics. The five Knowledge Areas are: Software Re-
quirements, Software Design, Software Construction, Software Testing, and Software Mainte-
nance. However, here the term security has been highlighted throughout the Guide, and terms like
secure software requirements, secure software design, secure software construction, secure soft-
ware testing, and, finally, secure software maintenance have been added.

Software Requirements and Secure Software Requirements
In the software requirements phase, the students are able to define the requirements as properties
that solve some real-world problem. Within the first two sub areas, “Software Requirements Fun-
damentals” and “Requirements Process,” the students learn about the definitions of software re-
quirements as well as the major types of requirements: product vs. process and functional vs. non-
functional. Students will learn to describe process models, process actors, process support and
management, and process quality and improvement. The second sub area, “requirement process,”
will introduce students to the first guideline on securing software requirements (as it is shown in
Table 4), which is negotiating trade-offs that are both acceptable to the principal stakeholders and
within budgetary, technical, regularity, and other constraints, that is because it will not be possi-
ble to perfectly satisfy the requirements of every stakeholder. The second guideline covers the
link between the process activities identified in the process models and the issues of costs, human
resources, training, and tools. The third guideline covers the improvement of the requirements
process by using standards and models in terms of the cost and timeliness of a software product
and of the customer’s satisfaction with it.

Figure 1: Course Overview

Secure Software Engineering: A New Teaching Perspective

88

The third sub area, “requirements elicitation,” is concerned with where software requirements
come from and how the software engineer can collect them. It includes requirement sources and
elicitation techniques. Learning these by themselves are practical guidelines that enhance the
above proposed guidelines such as interviews, scenarios, prototypes, facilitated meetings and ob-
servations.

The fourth sub area, “requirements analysis,” is concerned with the process of analyzing require-
ments in order to detect and resolve conflicts between them and discover the bounds of the soft-
ware and how it must interact with its environment. Requirements analysis includes classification,
conceptual modeling, architectural design, and allocation of requirements, as well as requirements
negotiation. Students learn many practical ways to secure software requirements that assist in un-
derstanding issues associated with modeling entities from the problem domain configured to re-
flect their real-world relationships and dependencies. The SWEBOK guide provides many exam-
ples of conceptual modeling, such as UML, formal modeling, IEEE Std 1320.1 for functional
modeling, and IEEE Std 1320.2 for information modeling. Moreover, it refers to IEEE Std 1471-
2000 for recommended practices for describing the architectural aspects of software-intensive
systems. This standard suggests a multiple-viewpoint approach to describe the architecture of sys-
tems and their software items.

The fifth sub area, “requirements specification,” typically refers to the production of a document,
or its electronic equivalent, that can be systematically reviewed, evaluated, and approved (Abran
et al., 2004). The general rule is that notations should be used that allow the requirements to be
described as precisely as possible. This rule serves as a guideline for students to consider in writ-
ing the software requirements specification document, keeping in mind a number of quality indi-
cators. IEEE 1465 is a standard treating quality requirements in software packages. Students are
also introduced to IEEE Std 830 for the production and content of the software requirements spe-
cification.

In addition, the last two sub areas, which are “requirements validation” and “practical considera-
tions,” can be taught to students as security guidelines and practices. Many security vulnerabili-
ties in software can be avoided if students are better equipped to recognize the security implica-
tions of their requirements choices. In requirements validation, they examine the requirements
documents to ensure that they are defining the right system (that is, the system that the user ex-
pects). Requirements validation is subdivided into descriptions of the conduct of requirements
reviews (IEEE Std 1028), prototyping, and model validation and acceptance tests (Abran et al.,
2004).

The practical considerations sub area describes topics which need to be understood in practice.
The first topic is the iterative nature of the requirements process. The next three topics are fun-
damentally about change management and the maintenance of requirements in a state which ac-
curately mirrors the software to be built or that has already been built. This includes change man-
agement, requirements attributes, and requirements tracing. The final topic is requirements meas-
urement (Abran et al., 2004).

Table 4 summarizes and highlights how security is applied in the software requirements phase
within the SWEBOK Guide.

 Abu Talib, Khelifi, & Jololian

 89

Table 4 Secure Software Requirements in SWEBOK Guide

SWEBOK Topics and References Derived Guidelines

2.3. Process Support and Management

2.4. Process Quality and Improvement

1. Negotiating the trade-offs.

2. Link between the process activities and the issues of costs,
human resources, training and tools.

3. Improve the requirements process by using standards and
models.

3. Requirements Elicitation

3.1. Requirements Sources

3.2. Elicitation Techniques

Practical guidelines such as interviews, scenarios, prototypes,
facilitated meetings and observations.

4. Requirements Analysis

4.1. Requirements Classification

4.2. Conceptual Modeling

4.3. Architectural Design and Requirements
Allocation

4.4. Requirements Negotiation

Practical guidelines and standards such as UML, formal model-
ing, IEEE Std 1320.1 for functional modeling, IEEE Std 1320.2
for information modeling and IEEE Std 1471-2000.

5. Requirements Specifications

5.1. The System Definition Document

5.2. System Requirements Specification

5.3 Software Requirements Specification

Standards such as IEEE Std 830 and IEEE 1465.

6. Requirements Validation

6.1. Requirements Reviews

6.2. Prototyping

6.3. Model Validation

6.4. Acceptance Tests

1. IEEE 1028 provides guidance on conducting requirements
review.

2. Prototyping for validating the software engineer’s interpreta-
tion of the software requirements.

3. Static analysis to verify that communication paths exist be-
tween objects.

4. Perform acceptance testing.

7. Practical Considerations

7.1. Iterative Nature of the Requirements
Process

7.2. Change Management

7.3. Requirements Attributes

7.4. Requirements Tracing

7.5. Measuring Requirements

1. Go through a defined review and approval process, and apply
careful requirements tracing, impact analysis and software con-
figuration management.

2. IEEE Std 14143.1 defines the concept of Functional Size
Measurement to evaluate the size of change in requirements or
in estimating the cost of a development or maintenance task.

Software Design and Secure Software Design
In software design phase, the students learn how to define the architecture, components, inter-
faces, and other characteristics of a system or component. They accomplish this through learning
first about the software design fundamentals, which form an underlying basis to the understand-

Secure Software Engineering: A New Teaching Perspective

90

ing of the role and scope of software design. These fundamentals are: general software concepts,
the context of software design, the software design process, and the enabling techniques for soft-
ware design (Abran et al., 2004).

Software design assumptions and choices that determine how the software will operate and how
different modules/components will interact at this phase should be analyzed and adjusted to mi-
nimize the exposure of those functions and interfaces to attackers. Therefore, to secure such soft-
ware design phase and reduce design defects, they have to learn some enabling techniques that
are key notions considered fundamental to many different software design approaches and con-
cepts such as IEEE1016-98 for recommended practice for software design descriptions. More-
over, the students deal with number of key issues when designing software such as how to struc-
ture and organize the interactions with users and the presentation of information i.e. using the
Model-View-Controller approach. They also deal with other issues, for example concurrency,
control and handling of events, distribution of components, error and exception handling, and
fault tolerance and data persistence. All of these are derived guidelines and practices for securing
software design.

Students are introduced to the architectural structures and viewpoints, architectural styles, design
patterns, and families of programs and frameworks as best practices of securing software design.
They learn different ideas about software design at different levels of abstraction: different archi-
tectural styles (such as general structure, distributed systems, interactive systems, and adaptable
systems) and different design patterns (such as creational patterns, structural patterns, and behav-
ioral patterns).

In addition, the students know some basics about the design notations as tools to be used in pro-
ducing accurate pictures about the software besides capturing some quality attributes. The stu-
dents will be introduced to ISO9126-01 for software engineering – product quality and
ISO15026-98 for system and software integrity levels. They also will be introduced to various
tools and techniques such as software design reviews, static analysis, and simulation and proto-
typing. They will briefly learn about function-oriented design measures and object-oriented de-
sign measures (Abran et al., 2004). These are another set of guidelines and practices for securing
software design.

The final derived guideline is understanding some general strategies to help guide the design
process as a means of transferring knowledge and as a common framework for teams of software
engineers such as divide-and-conquer and stepwise refinement, top-down vs. bottom-up strate-
gies, data abstraction and information hiding, use of heuristics, use of patterns and pattern lan-
guages, use of an iterative and incremental approach. Table 5 highlights how security is applied
in software design phase within SWEBOK Guide.

Table 5 Secure Software Design in SWEBOK Guide

SWEBOK and Topics and References Derived Guidelines

1.4. Enabling Techniques

1.4.1. Abstraction

1. 4.2. Coupling and Cohesion

1. 4.3. Decomposition and modularization

1.4. 4. Encapsulation/information hiding

1. 4.5. Separation of interface and implementation

1. 4.6. Sufficiency, completeness and primitiveness

Learning enabling techniques that are key no-
tions considered fundamental to many different
software design approaches and concepts such as
IEEE1016-98 for recommended practice for
software design descriptions.

 Abu Talib, Khelifi, & Jololian

 91

2. Key Issues in Software Design

2.1. Concurrency

2.2. Control and Handling of Events

2.3. Distribution of Components

2.4. Error and Exception Handling and Fault Tolerance

2.5. Interaction and Presentation

Dealing with number of key issues when design-
ing software such as:

1. How to decompose, organize and package
software components.

2. How to structure and organize the interactions
with users and the presentation of information
i.e. using the Model-View-Controller approach.

3. Software Structure and Architecture

3.1. Architectural Structures and Viewpoints

3.2. Design Patterns

3.3. Families of Programs and Frameworks

Learning about different ideas about software
design at different levels of abstraction:

1. Different architectural styles such as general
structure, distributed systems, interactive sys-
tems, adaptable systems, etc.

2. Different design patterns such as creational
patterns, structural patterns and behavioral pat-
terns.

3. Different families of programs and frame-
works.

4. Software Design Quality Analysis and Evaluation

4.1. Quality Attributes

4.2.Quality Analysis and Evaluation Techniques

4.3. Measures

Learning about quality that is related to software
design:

1. ISO9126-01 for software engineering – prod-
uct quality and ISO15026-98 system and soft-
ware integrity levels.

2. Through various tools and techniques such as
software design reviews, static analysis and si-
mulation and prototyping.

3. Function-oriented design measures and ob-
ject-oriented design measures.

5. Software Design Notations

5.1. Structural Descriptions (static view)

5.2. Behavioral Descriptions (dynamic view)

Learning many notations and languages to repre-
sent software design artifacts.

6. Software Design Strategies and Methods

6.1. General Strategies

6.2. Function-Oriented (Structured) Design

6.3. Object-Oriented Design

6.4. Data-Structure-Centered Design

6.5. Component-Based Design (CBD)

6.6. Other Methods

Learning various general strategies to help guide
the design process as a means of transferring
knowledge and as a common framework for
teams of software engineers such as divide-and-
conquer and stepwise refinement, top-down vs.
bottom-up strategies, data abstraction and infor-
mation hiding, use of heuristics, use of patterns
and pattern languages, use of an iterative and
incremental approach.

Software Construction and Secure Software Construction
Software construction refers to the detailed creation of working, meaningful software through a
combination of coding, verification, unit testing, integration testing, and debugging. Students will
learn about the fundamentals of software such as minimizing complexity, anticipating change,

Secure Software Engineering: A New Teaching Perspective

92

and constructing for verification. This practical assistance for secure software construction teach-
es students how to create code that is simple and readable by using various techniques as well as
construction standards, such as those of the IEEE and ISO. They secure the construction phase by
anticipating changes, using techniques such as communication methods, programming languages,
platforms, and tools.

Moreover, the students will be provided with an overview of construction design, construction
languages, coding, construction testing, reuse, construction quality, and integration. The derived
guidelines, practices and standards are summarized in Table 6.

Table 6 Secure Software Construction in SWEBOK Guide

SWEBOK Topics and Refer-
ences

Derived Guidelines

1. Software Construction Funda-
mentals

1.1. Minimizing Complexity

1.2. Anticipating Change

1.3. Constructing for Verification

1.4. Standards in Construction

1. Learning how to create code that is simple and readable by using
various techniques as well as standards in construction such as the
IEEE and ISO.

2. Anticipating changes by using techniques such as communication
methods, programming languages, platforms and tools.

3. Constructing for verification by following code reviews, unit test-
ing, organizing code to support automated testing and restricted use of
complex or hard to understand language structures, among others.

2. Managing Construction

2.1. Construction Models

2.2. Construction Planning

2.3. Construction Measurement

1. Learning numerous models to develop software such as the water-
fall model, staged-delivery model, evolutionary prototyping, extreme
programming and scrum.

2. Defining the order in which components are created and integrated,
the software quality management processes, the allocation of task
assignments to specific software engineers, and the other tasks, ac-
cording to the chosen model.

3. Measuring for purpose of managing construction, ensuring quality
during construction, improving the construction process, etc.

3. Practical considerations

3.1. Construction Design

3.2. Construction Languages

3.3. Coding

3.4. Construction Testing

3.5. Reuse

3.6. Construction Quality

3.7 Integration

1. Learning various techniques and practical considerations to en-
hance the construction activities and reduce the gap between the time
at which faults are inserted into code and the time those faults are
detected.

2. Using many standards such as IEEE Std 829-1998, IEEE Standard
for Software Test Documentation, IEEE Std 1008-1987, IEEE Stan-
dard for Software Unit Testing, IEEE Std 1517-1999, IEEE Standard
for Information Technology-Software Life Cycle Processes- Reuse
Processes and ISO/IEC 12207:95, Standard for Information Technol-
ogy-Software Life Cycle Processes.

Software Testing and Secure Software Testing
Software testing consists of the dynamic verification of the behavior of a program on a finite set
of test cases, suitably selected from the usually infinite execution domain, against expected be-
havior. At the beginning of this phase, students learn the software testing fundamentals. First, the
testing-related terminology is presented, then key issues of testing are described, and, finally, the
relationship of testing to other activities is covered (Abran et al., 2004).

 Abu Talib, Khelifi, & Jololian

 93

The main objectives of securing software testing, according to Jarzombek & Goertzel (2006), are:
1) Detection of security defects, coding errors, and other vulnerabilities, including those gener-
ated from complex relationships among functions and those that exist in obscure areas of code,
such as dormant functions; 2) demonstration of continued secure behavior when subjected to at-
tack patterns; and 3) verification that the software consistently exhibits its required security prop-
erties and functional constraints under both normal and hostile conditions. To teach them to meet
these objectives, the students will learn some test techniques. The first category includes tests
based on the tester’s intuition and experience. A second group comprises specification-based
techniques, followed by code-based techniques, fault-based techniques, usage-based techniques,
and techniques related to the nature of the application (Abran et al., 2004).

A discussion of how to select and combine the appropriate techniques is also presented as a
guideline to secure the testing phase. The course will cover some test-related measures, grouped
into those related to the evaluation of the program under test and the evaluation of the tests per-
formed. Brief practical considerations will be introduced to the students.

The Table 7 highlights how security is applied in the software testing phase within the SWEBOK
Guide.

Table 7 Secure Software Testing in SWEBOK Guide
SWEBOK Topics and References Derived Guidelines
1.2. Key issues
1.2.2. Testing effectiveness/Objectives
for testing
1.2.3. Testing for defect identification

Detection of security defects, coding errors, and other vulner-
abilities.

3. Test Techniques
3.1. Based on the software engineer's
intuition and experience

3.2. Specification-based techniques

3.3. Code-based techniques

Learning various techniques and practical considerations such as
1. ad hoc testing
2. exploratory testing
3. equivalence partitioning
4. boundary-value analysis
5. decision table
6. finite-state machine-based
7. testing from formal specifications
8. random testing
9. control-flow-based criteria
10. data flow-based criteria
11. reference models for code-based testing (flowgraph, call
graph)

Software Maintenance
Once in operation, anomalies are uncovered, operating environments change, and new user re-
quirements surface. The maintenance phase of the life cycle commences upon delivery, but main-
tenance activities are performed much earlier. Students are introduced to the software mainte-
nance fundamentals. They learn some definitions and terminology, the nature of maintenance, the
need for maintenance, the majority of maintenance costs, the evolution of software, and the cate-
gories of maintenance.

Proposed Course Topics
As was discussed in the previous section, the proposed topics are summarized in Table 8. This
can be run as a 14-week course and can be offered as an undergraduate or graduate course for
students who have little background in software engineering or programming.

Secure Software Engineering: A New Teaching Perspective

94

Table 8 Proposed Topics for a Secure Software Engineering Course

Week # Topic Detailed subtopics SWEBOK
Reference

#1 Software Engi-
neering

1. What is Software Engineering?
2. What is Secure Software Engineering?
2.1 Threats and Vulnerabilities

Chapter 1

#2 Software Re-
quirements

1. Software Requirements Fundamentals
2. Requirements Process
3. Requirements Elicitation

Chapter 2

#3-#4 Secure Software
Requirements

4. Requirements Analysis
5. Requirements Specification
6. Requirements validation
6.1 Requirements Reviews
6.2 Prototyping
6.3 Model Validation
6.4 Acceptance Tests
7. Practical Considerations
7.1 Iterative Nature of the Requirements Proc-
ess
7.2 Change Management
7.3 Requirements Attributes
7.4 Requirements Tracing
7.5 Measuring Requirements

Chapter 2

Sections
6&7

#5 Software Design 1. Software Design Fundamentals Chapter 3

#6-#8 Secure Software
Design

1. Enabling Techniques
1.1. Abstraction
1.2. Coupling and cohesion
1.3. Decomposition and modularization
1.4. Encapsulation/information hiding
1.5. Separation of interface and implementation
1.6. Sufficiency, completeness and primitive-
ness
2. Key Issues in Software Design
2.1. Concurrency
2.2. Control and Handling of Events
2.3. Distribution of Components
2.4. Error and Exception Handling and Fault
Tolerance
2.5. Interaction and Presentation
2.6. Data Persistence
3. Software Structure and Architecture
3.1. Architectural Structures and Viewpoints
3.2. Design Patterns (overview)
3.3. Families of Programs and Frameworks
4. Software Design Quality Analysis and
Evaluation
4.1. Quality Attributes
4.2. Quality Analysis and Evaluation Tech-
niques
4.3. Measures
5. Software Design Notations
6. Software Design Strategies and Methods

Chapter 3

 Abu Talib, Khelifi, & Jololian

 95

#9 Software Con-
struction (Imple-
mentation Phase)

1. Software Construction Fundamentals Chapter 4

#10-#11 Secure Software
Construction

1. Software Construction Consideration
1.1. Minimizing Complexity
1.2. Anticipating Change
1.3. Constructing for Verification
1.4. Standards in Construction
2. Managing Construction
2.1. Construction Models
2.2. Construction Planning
2.3. Construction Measurement

Chapter 4
Sections
1&2

#12 Software Testing 1. Software Testing Fundamentals
2. Testing Techniques
3. Secure Software Testing (Brief)

Chapter 5

#13 Software Mainte-
nance

1. Software Maintenance Fundamentals
1.1. Definitions and Terminology
1.2. Nature of Maintenance
1.3. Need for Maintenance
1.4. Majority of Maintenance
1.5. Evolution of Software
1.6. Categories of Maintenance
2. Key Issues in Software Maintenance

Chapter 6

Suggestions for Enhancing the SWEBOK Guide
Previous sections have shown that the current SWEBOK Guide can serve as a reference for a se-
cure software engineering course. The SWEBOK Guide can be upgraded by highlighting the term
“security” throughout the Guide, as well as adding terms such as secure software requirements,
secure software design, secure software construction, secure software testing, and finally secure
software maintenance (refer to the section on the Proposed Guidelines and Practices based on
SWEBOK). In this section, we recommend some additions that could be taken into consideration
for SWEBOK 2010. They are summarized as follows:

• Introduce definitions for software security, security threats, and security vulnerabilities,
as well as explain how software security is different from security features and how secu-
rity vulnerabilities arise from poor software engineering practices (Walden & Frank,
2006).

• Define significant insider threat vulnerabilities that can be introduced during all phases of
the software development life cycle (CERT, 2008).

• Include security engineering activities, such as security requirements elicitation and defi-
nition, secure design based on design principles for security, use of static analysis tools,
secure reviews and inspections, and secure testing methods. A good source of informa-
tion about secure engineering activities is the Department of Homeland Security (DHS)’s
Build Security In web site (https://buildsecurityin.us-cert.gov/portal/). The Systems Secu-
rity Engineering Capability Maturity Model (SSE-CMM) is a process model that can be
also used to improve and assess the security engineering capability of an organization.
The SSE-CMM provides a comprehensive framework for evaluating security engineering
practices against the generally accepted security engineering principles. By defining such
a framework, the SSE-CMM provides a way to measure and improve performance in the

https://buildsecurityin.us-cert.gov/portal/�

Secure Software Engineering: A New Teaching Perspective

96

application of security engineering principles (Redwine & Davis, 2004). The SSE-CMM
has been adopted as the ISO/IEC 21827 standard. Further information about the model is
available at http://www.sse-cmm.org

• Include security assurance activities, such as verification, validation, expert review, arti-
fact review, and evaluations. Security assurance usually also includes activities for the
requirements, design, implementation, testing, release, and maintenance phases of the
software development life cycle (NASA, 1989).

• Include organizational activities, such as organizational policies, senior management
sponsorship and oversight, establishing organizational roles, and other organizational ac-
tivities that support security. Project management activities include project planning and
tracking, and resource allocation and usage to ensure that the security engineering, secu-
rity assurance, and risk identification activities are planned, managed, and tracked.

• Introduce risk management as a means to evaluate the risks to an application by identify-
ing its assets, along with threats to the confidentiality, integrity, or availability of those
assets. Risk management is also a means to rank those risks to determine which risks
need to be mitigated and which risks can be accepted (Walden & Frank, 2006). Security
risk is also addressed at the Department of Homeland Security (DHS) Build Security in
web site (https://buildsecurityin.us-cert.gov/portal/).

• Build security into the early stages of the software development life cycle by addressing
security requirements and prioritizing them. Then, the requirements elicitation and analy-
sis can take place on this set of security requirements. The National Institute of Standards
and Technology (NIST) reports that software that is faulty in terms of security and reli-
ability costs the economy $59.5 billion annually in breakdowns and repairs. The costs of
poor security requirements make it apparent that even a small improvement in this area
will generate a high value. The SWEBOK Guide can refer to the Security Quality Re-
quirements Engineering (SQUARE) methodology, which consists of nine steps that gen-
erates a final deliverable of categorized and prioritized security requirements (Mead,
Hough, & Stehney, 2005). Papers on incorporating security requirements engineering in-
to the dynamic systems development method and into the rational unified process have
also been presented at conferences (Mead, Venkatesh, & Padmanabhan, 2008; Mead,
Venkatesh, & Zhan, 2008).

• Include more coding standards and best practices to secure software construction and stop
malicious hackers in their tracks. For example, ISO/IEC TR 24772, “Guidance to Avoid-
ing Vulnerabilities in Programming Languages through Language Selection and Use”
(ISO/IEC TR 24772, 2008), the CERT C Secure Coding Standard, with that has more
than 220 contributors and reviewers participating in its standard’s development (Seacord,
2005), as well as, Secure Coding in C and C++ (CERT, 2008, Seacord, 2008).

• Introduce variety into code review types, ranging from informal peer reviews to formal
inspection and static analysis tools. The Secure Coding Initiative (SCI) is working with
industry partners, such as LDRA and Fortify Software, and with research partners, such
as JPCERT and Lawrence Livermore National Laboratory, to enhance existing source
code analysis tools (CERT 2008).

• Include more information about Software Engineering process management (Davis,
2005), such as Capability Maturity Model Integration (CMMI), the Federal Aviation
Administration integrated Capability Maturity Model (FAA-iCMM) (FAA 01), Trusted
CMM/Trusted Software Methodology (T-CMM/TSM) (Kitson, 1995), Systems Security
Engineering Capability Maturity Model (SSE-CMM) (Redwine & Davis, 2004), or

http://www.sse-cmm.org/�
https://buildsecurityin.us-cert.gov/portal/�

 Abu Talib, Khelifi, & Jololian

 97

ISO/IEC 21827, Microsoft’s Trustworthy Computing Security Development Lifecycle
(SDL) (Lipner & Howard, 2005), Team Software Process for Secure Software Develop-
ment (TSP), Correctness by Construction (Hall & Chapman, 2002), Agile Methods,
Common Criteria for Information Technology Security Evaluation or ISO/IEC 15408.

• Include other key standards and methods that apply to developing secure software, such
as ISO/IEC 15288 for System Life Cycle Processes and Cleanroom Software Engineering
(Linger, 1994; Mills & Linger, 1987).

Conclusions and Future Work
This paper describes the integration of security into the Software Engineering curriculum as per
the SWEBOK Guidelines. It summarizes the secure development guidelines and practices into
each phase of the life cycle based on the SWEBOK Guide. It proposes the topics to be covered
during an academic term. Further work is required to apply the proposed secure requirements
analysis, design, implementation, and testing guidelines and practices into a single semester soft-
ware engineering course at the graduate level at Zayed University in the UAE. The instructor will
evaluate the course through quantitative measures in order to estimate the knowledge gained on
securing software engineering. Also planned is a research to update the secure software engineer-
ing course topics and the guidelines upon release of the 2010 version of the SWEBOK Guide.

Acknowledgment
Thanks to Dr. Alain Abran and Dr. Pierre Bourque, who have reviewed the paper and provided
significant feedback.

References
Abran, A., Moore, J.W., Bourque, P., Dupuis, R., and Tripp, L.L.: Software Engineering Body of Knowl-

edge. Los Alamitos: IEEE Computer Society Press, 2004 edition.

CERT. (2003). Secure systems. Retrieved from CERT: www.cert.org

CERT. (2008). CERT's podcasts: Security for business leaders: Show notes. Retrieved January 31, 2010,
from CERT Podcast Series http://www.cert.org/podcast/notes/20080304cappelli-notes.html

Davis, N. (2005). Secure software development life cycle processes: A technology scouting report. Pitts-
burgh, Pennsylvania, USA: Software Engineering Institute, Carnegie Mellon University.

Frank, C., Walden, J., & Shumba, R. (2006). SIGCSE 2006 birds of a feather: Secure software engineering.
37th SIGCSE Technical Symposium on Computer Science Education (p. 573). Houston, Texas, USA.

Graff, M., & Van Wyk, K. R. (2002). Secure coding, principles, and practices. O’Reilly.

Hall, A., & Chapman, R. (2002). Correctness by construction: Developing a commercial secure system.
IEEE Software, 18-25.

Howard, M. (2005, November). A look inside the security development lifecycle at Microsoft. Retrieved
September 30, 2009, from MSDN: http://msdn.microsoft.com/en-us/magazine/cc163705.aspx

Howard, M., & LeBlanc, D. (2002). Writing secure code (2nd ed.). Redmond, WA: Microsoft Press.

ISO/IEC TR 24772. (2008). Information technology — Programming languages — Guidance to avoiding
vulnerabilities in programming languages through language selection and use. Geneva: ISO.

Jarzombek, J. & Goertzel, K. M. (2006). Security in the software life cycle. CrossTalk: The Journal of De-
fense Software Engineering. Retrieved from
http://www.stsc.hill.af.mil/Crosstalk/2006/09/0609JarzombekGoertzel.html

http://www.cert.org/�
http://www.cert.org/podcast/notes/20080304cappelli-notes.html�
http://msdn.microsoft.com/en-us/magazine/cc163705.aspx�
http://www.stsc.hill.af.mil/Crosstalk/2006/09/0609JarzombekGoertzel.html�

Secure Software Engineering: A New Teaching Perspective

98

Kitson, D. H. (1995). A tailoring of the CMM for the trusted software domain. Proceedings of the Seventh
Annual Software Technology Conference. Salt Lake City, Utah.

Linger, R. C. (1994). Cleanroom process model. IEEE Software, 11(2), 50-58.

Lipner, S., & Howard, M. (2005, March). The trustworthy computing security development lifecycle. Re-
trieved September 30, 2009, from MSDN: http://msdn.microsoft.com/en-us/library/ms995349.aspx

McDermott, J., & Fox, C. (1999). Using abuse case models for security requirements analysis. 15th Annual
Computer Security Applications Conference (ACSAC '99) (p. 55). Scottsdale, AZ, USA: IEEE Com-
puter Society.

Mead, N. R., Hough, E., & Stehney, T. (2005). Security Quality Requirements Engineering (SQUARE)
Methodology (CMU/SEI-2005-TR-009). Pittsburgh: Software engineering Institute, Carnegie Mellon
University.

Mead, N. R., Venkatesh, V., & Padmanabhan, D. (2008). Incorporating security requirements engineering
into the dynamic systems development method. COMPSAC (International Computer Software and
Applications Conference), IWSSE Workshop (International Workshop on Security and Software Engi-
neering), July 28, 2008, Turku, Finland. IEEE Computer Society, 949–954.

Mead, N. R., Venkatesh, V., & Zhan, J. (2008). Incorporating security requirements engineering into the
rational unified process. International Conference on Information Security and Assurance (ISA), Bu-
san, Korea, April 26–28, IEEE Computer Society, 537–542.

Microsoft. (2009, May 19). The security development lifecycle: Making secure code easier. Retrieved Sep-
tember 30, 2009, from MSDN Blog: http://blogs.msdn.com/sdl/archive/2009/05/19/making-secure-
code-easier.aspx

Mills, H., & Linger, R. C. (1987). Cleanroom software engineering. IEEE Software, 4(5), 19-25.

NASA. (1989, September). Software assurance guidebook, NASA-GB-A201. Retrieved January 31, 2010,
from http://satc.gsfc.nasa.gov/assure/agb.txt

PricewaterhouseCoopers. (2004). Information security breaches survey. Retrieved January 31, 2010, from
PricewaterhouseCoopers: http://www.pwc.co.uk/pdf/dti_technical_report_2004.pdf

Redwine, S. T. (2006). Software assurance: A guide to the common body of knowledge to produce, ac-
quire, and sustain secure software. US Department of Homeland Security.

Redwine, S. T., & Davis, N. (2004). Processes to produce secure software: Towards more secure software.
Retrieved from http://www.criminal-justice-careers.com/resources/Software+Pro.pdf

Seacord, R. C. (2005). Secure coding in C and C++. Boston: Addison- Wesley Professional.

Seacord, R. C. (2008). The CERT C secure coding standard. Boston: Addison-Wesley Professional.

Shumba, R., Walden, J., Ludi, S., Taylor, C., & Wang, J. A. (2006). Teaching the secure development life-
cycle: Challenges and experiences. 10th Colloquium for Information Systems Security Education.

Viega, J. & McGraw, G. (2002). Building secure software. Addison-Wesley.

Viega, J.& Messier M. (2003). Secure programming cookbook for C and C++. O’Reilly.

Walden, J., & Frank, C. E. (2006). Secure software engineering teaching modules. 3rd Annual Conference
on Information Security Curriculum Development.

http://msdn.microsoft.com/en-us/library/ms995349.aspx�
http://blogs.msdn.com/sdl/archive/2009/05/19/making-secure-code-easier.aspx�
http://blogs.msdn.com/sdl/archive/2009/05/19/making-secure-code-easier.aspx�
http://satc.gsfc.nasa.gov/assure/agb.txt�
http://www.pwc.co.uk/pdf/dti_technical_report_2004.pdf�
http://www.criminal-justice-careers.com/resources/Software+Pro.pdf�

 Abu Talib, Khelifi, & Jololian

 99

Biographies
Manar Abu Talib is an assistant professor at the Information Tech-
nology College of Zayed University in the UAE. She holds a PhD in
Computer Science and Software Engineering (2007) from Concordia
University in Montreal, Canada. Manar is a researcher in the area of
software engineering with substantial experience and knowledge in
conducting research in software measurement analysis, design, and
testing. She has an impressive list of papers to her credit, which have
most recently been accepted by journals in Canada, Italy, and Ger-
many.

Adel Khelifi is an assistant professor in the Software Engineering de-
partment and director of IT at ALHOSN University, UAE. He has had
an impressive career, most recently working as a lecturer at the École
de technologie supérieure in Canada and, previously, for the United
Nations MSF in Canada, for Canada’s Ministry of Citizenship and
Immigration and for the Ministry of Finance in Tunisia. Currently, he
is involved in developing software engineering course content, includ-
ing software quality, software testing, and software maintenance. As a
Canadian ISO member in software engineering, Dr. Khelifi is contrib-
uting to the development of software measurement standards.

Leon Jololian joined Zayed Unversity in 2006. He has been the acting
Dean, then Dean of the College of IT since 2007. Prior to joining
Zayed University, Dr. Jololian served on the faculty of several univer-
sities in the US, including New Jersey City University, University of
Alabama at Birmingham, and New Jersey Institute of Technology. Dr.
Jololian has considerable research publications and is a holder of a US
patent. He has helped establish and launch the graduate program in the
College of IT at Zayed University which offers an MS degree in in-
formation security with specialization in cyber security. Under his
leadership, the College of IT is going through the process of seeking

ABET accreditation for its undergraduate IT program.

	Secure Software Engineering: A New Teaching Perspective Based on the SWEBOK
	Manar Abu TalibZayed University, Abu Dhabi, UAE
	manar.abutalib@zu.ac.ae

	Adel Khelifi Al Hosn University, Abu Dhabi, UAE
	a.khelifi@alhosnu.ae

	Leon JololianZayed University, Abu Dhabi, UAE
	leon.jololian@zu.ac.ae

	Abstract
	Introduction
	Literature Review
	What is the SWEBOK GUIDE?

	The Proposed Guidelines and Practicesbased on SWEBOK
	Software Requirements and Secure Software Requirements
	Software Design and Secure Software Design
	Software Construction and Secure Software Construction
	Software Testing and Secure Software Testing
	Software Maintenance

	Proposed Course Topics
	Suggestions for Enhancing the SWEBOK Guide
	Conclusions and Future Work
	Acknowledgment
	References
	Biographies

