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ABSTRACT 
Aim/Purpose To predict the change-proneness of  software from the continuous evolution 

using machine learning methods. To identify when software changes become 
statistically significant and how metrics change. 

Background Software evolution is the most time-consuming activity after a software re-
lease. Understanding evolution patterns aids in understanding post-release 
software activities. Many methodologies have been proposed to comprehend 
software evolution and growth. As a result, change prediction is critical for 
future software maintenance. 

Methodology I propose using machine learning methods to predict change-prone classes. 
Classes that are expected to change in future releases were defined as change-
prone. The previous release was only considered by the researchers to define 
change-proneness. In this study, I use the evolution of  software to redefine 
change-proneness. Many snapshots of  software were studied to determine 
when changes became statistically significant, and snapshots were taken bi-
weekly. The research was validated by looking at the evolution of  five large 
open-source systems. 

Contribution In this study, I use the evolution of  software to redefine change-proneness. 
The research was validated by looking at the evolution of  five large open-
source systems. 

Findings Software metrics can measure the significance of  evolution in software. In 
addition, metric values change within different periods and the significance 
of  change should be considered for each metric separately. For five classifi-
ers, change-proneness prediction models were trained on one snapshot and 
tested on the next. In most snapshots, the prediction performance was excel-
lent. For example, for Eclipse, the F-measure values were between 80 and 94. 
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For other systems, the F-measure values were higher than 75 for most snap-
shots. 

Recommendations 
for Practitioners 

Software change happens frequently in the evolution of  software; however, 
the significance of  change happens over a considerable length of  time and 
this time should be considered when evaluating the quality of  software. 

Recommendation 
for Researchers 

Researchers should consider the significance of  change when studying soft-
ware evolution. Software changes should be taken from different perspec-
tives besides the size or length of  the code. 

Impact on Society Software quality management is affected by the continuous evolution of  pro-
jects. Knowing the appropriate time for software maintenance reduces the 
costs and impacts of  software changes. 

Future Research Studying the significance of  software evolution for software refactoring 
helps improve the internal quality of  software code. 

Keywords software evolution, software metrics, change-proneness, machine learning 

 

INTRODUCTION 
Software evolution is inevitable for all software applications and to improve software quality. Accord-
ing to the ISO9000 definition, quality is defined as a degree “to which a set of  inherent characteris-
tics of  an object fulfills requirements” (Témolé & Atanasova, 2023). Software quality describes the 
desirable attributes of  software products and is paramount to the success of  software projects, in-
cluding software in maintenance. Software maintenance is a paramount activity in the software pro-
cess and costs more than 50% of  the total project costs (Malhotra & Khanna, 2019), accounting for 
50–80% of  software production expenses in the United States (Carr & Wagner, 2002). Software 
maintenance is driven by several factors including user requests, emerging technologies, and new plat-
forms (Rajlich, 2014; Xie et al., 2017). Software maintenance activities have different types including 
adding new features, quality improvements, and system adaptation to new environments. These types 
of  changes cause the software to grow, and changes make classes more prone to change. Understand-
ing evolution patterns in software helps engineers understand how software grows. Software growth 
can be used in maintenance activities such as corrective maintenance for the next version or release 
(Kemerer & Slaughter, 1999). In previous research, software evolution trends were modeled using 
mathematical models, such as linear and sublinear models. These models provide insights into the 
growth of  software. Evolution trends can be used to understand software quality and help in control-
ling the quality of  software (Chatzigeorgiou & Melas, 2012; Israeli & Feitelson, 2010; Mens & 
Demeyer, 2008). For example, evolution metrics were used to build fault-prediction models using 
machine learning and regression classifiers (Illes-Seifert & Paech, 2010; Kaur et al., 2016). In addi-
tion, understanding software evolution helps to improve the maintainability of  future releases. There-
fore, more effective and efficient evolution analysis tools are required (Yu & Mishra, 2013). Agrawal 
and Singh (2020) studied the history of  change and how ripple change happens. This study helps re-
searchers in studying the future changeability pattern.   

Keeping software in high quality is vital for large software systems that evolve for a long time. 
Researchers have studied and investigated how to improve software quality using important quality 
attributes such as fault-proneness (Illes-Seifert & Paech, 2010), maintainability (Giray et al., 2023), 
and reusability (P. Kumar et al., 2022). Software systems continue to grow while the quality of  these 
systems continues to either improve or degrade (Agrawal & Singh, 2020). However, when software 
changes become significant it is not studied in previous literature. The research aims to study the 
relationship between software quality as measured using internal software metrics and the evolution 
of  software using machine learning models to know when internal properties of  software, such as 
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coupling, and cohesion, become significantly different. In addition, using machine learning helps 
automate the change prediction and reduces the human-centric efforts of  prioritizing the tasks of  
software development and maintenance. Hence, software activities affected by change, such as 
regression testing, refactoring, and maintenance, are directed to most change-prone classes. 

Change-proneness was measured in the literature (e.g., Abbas et al., 2020; Bansal et al., 2022; Cato-
lino & Ferrucci, 2019; Zhu et al., 2022) by taking differences between consecutive releases without 
considering the significance of  the change. Change-proneness has been studied previously without 
considering the significance of  software evolution or change at specific intervals or time windows. 
For a better definition of  change-proneness, this research proposes to measure evolution using two 
methods: the number of  files affected by evolution and the time when static metrics change signifi-
cantly. These two methods are explored using both descriptive and visual analytics to identify the pe-
riods of  significant changes in six object-oriented metrics. These metrics measure coupling, cohesion, 
inheritance depth and breadth, complexity, and response set for a class. The study was applied to the 
evolution of  five large open-source systems that have evolved for more than three years (more than 
90 biweekly snapshots). The results were used to build change-proneness prediction for ten snap-
shots that were identified as significantly changed from previous snapshots. Five well-known machine 
learning classifiers – Logistic Regression (LR), Naïve Bayes (NB), Nearest Neighbors (NN), Support 
Vector Machines (SVM), and Decision Trees (CART) – are used to provide evidence of  change-
proneness prediction. The training of  each model was considered on one snapshot and tested on the 
next snapshot of  software for a better validation of  the model’s performance. The performance of  
these classifiers was measured using precision, recall, and F-measure. The results were high and can 
be considered helpful in predicting future change-prone classes in software. The collected data were 
provided publicly for further investigation by D’Ambros et al. (2010). 

Two research questions are proposed to understand software evolution using metrics. 

RQ1: Which metrics are most affected by software evolution? 

The research aims to know how software evolution affects software quality. Static internal metrics, 
such as object-oriented metrics, are used to assess software quality. Therefore, this research proposes 
measuring the effect of  metrics on software quality by determining which classes have changed be-
tween two consecutive snapshots of  software. Each metric’s change effect is calculated separately. 
The number of  classes that were different in two consecutive snapshots are counted, i.e., every two 
weeks, for each metric. The effect of  evolution on each metric is graphically depicted with line charts 
and summarized with boxplots. Charts compare the six metrics and determine which are most af-
fected by the change. 

RQ2: When does the software quality change significantly?  

For example, it is vital to know when couplings become significantly different, and whether couplings 
increase or decrease over time. 

The most expensive activity in software production is software maintenance and evolution (Erlikh, 
2000). Understanding how software evolves and when software differs significantly in size and quality 
is critical for understanding the impact of  change on software. Understanding the impact of  software 
evolution on software quality also requires identifying differences in other quality attributes. This re-
search aims to answer the following sub-questions: 

RQ2.1. When does coupling in software become statistically different from a measured version? 

RQ2.2. When does software cohesion become statistically different from a measured version? 

RQ2.3. When does the depth of  inheritance in software become statistically different from a 
measured version? 

RQ2.4. When does the breadth of  inheritance in software become statistically different from a 
measured version? 
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RQ2.5. When does a set of  responsibilities in software become statistically different from a 
measured version? 

RQ2.6. When does the complexity of  software become statistically different from a measured 
version? 

The rest of  the paper is structured as follows. In the next section, the related work is discussed and 
compared to previous work on software evolution and growth. Then the research methodology is 
presented including data collection and processing. The results of  the research questions are then dis-
cussed and analyzed, and the change-proneness classifiers are built and evaluated. Finally, the work is 
concluded.  

RELATED WORK 
The change history of  software systems has been studied by many previous researchers to under-
stand software maintainability. Authors have studied change at different levels: implementation and 
design. Implementation changes were studied for the line of  code changed, added, or deleted in soft-
ware (Herraiz et al., 2013), while design and architecture changes were studied at the function and 
class levels such as method body changes, method additions, method deletions, and signature changes 
(Wermelinger et al., 2008). The study of  software evolution helps in understanding software design 
and evolution patterns (Xing & Stroulia, 2004). Many previous works have shown a growth in the 
size or complexity of  software systems stability (Chatzigeorgiou & Melas, 2012; Israeli & Feitelson, 
2010). Researchers have studied the evolution of  many properties of  software. They found that mi-
nor releases are introduced usually to restore software familiarity and stability (Israeli & Feitelson, 
2010). Chatzigeorgiou and Melas (2012) studied the growth in coupling measured from the network 
properties of  systems. The authors found an exponential relationship between coupling and release 
time. However, the exponent was close to 1 and therefore the relationship is close to linear. The evo-
lution of  software was not utilized directly to predict software quality attributes such as change 
proneness.  

Change-proneness prediction is studied by many researchers using regression and machine learning 
methods to classify classes into either change-prone or not change-prone as shown studies summa-
rized in Table 1. Lindvall (1998) has studied the correlation between metrics and maintenance efforts. 
Lindvall also studied the correlation between software size and change-proneness. Arisholm et al. 
(2004) studied the dynamic coupling metrics’ correlation with change-proneness and found a signifi-
cant correlation. Koru and Tian (2005) investigated the correlation of  the highest values of  metrics 
with highly changed classes. The authors collected the change count from CVS as well as 51 metrics 
for Mozilla and 46 metrics for OpenOffice. They found a correlation between highly changed classes 
and properties such as large size, high coupling, low cohesion, or deep inheritance. Giger et al. (2012) 
have proposed to predict change-prone classes using a combination of  OO metrics and social net-
work analysis. The study used neural network models to predict change-proneness on either code 
metrics or social analysis metrics and found that a combination of  both outperforms using either 
one. Lu et al. (2012) have studied the prediction of  change-proneness on 102 Java systems using 62 
OO metrics. The authors used statistical meta-analysis methods to predict change-proneness. In this 
study, changes between two software releases were measured from two consecutive releases. Change-
proneness was measured by considering classes as change-prone if  one change was detected from the 
previous version of  the software, otherwise not change-prone. Size metrics, coupling, and cohesion 
exhibited discrimination between change-prone and not change-prone, while inheritance metrics 
were poor in discriminating between change-prone and not change-prone. Elish et al. (2015) con-
ducted maintenance efforts and change-proneness prediction using advanced techniques such as en-
semble methods. The authors performed classification on maintenance data. This empirical study 
compared individual prediction models with ensemble methods. The authors found that ensemble 
methods have better accuracy than individual models across datasets. Yan et al. (2017) proposed a 
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new self-learning method for change-proneness prediction. The authors applied unsupervised learn-
ing methods, including clustering, labeling, metrics selection, and instance selection, to predict 
change-prone classes. The study was conducted on the CK metrics in addition to dynamic coupling 
metrics. Malhotra and Jangra (2017) have studied the prediction of  change-proneness of  classes us-
ing object-oriented metrics. The authors conducted 10 machine learning techniques and compared 
the performance of  the resulting models with a statistical model. The results were similar in the two 
types of  classifications. The study was conducted on two open-source systems built in Java. L. Ku-
mar et al. (2017) studied a large set of  software metrics as predictors of  change-proneness. The mod-
els were built for eight machine learning techniques and the features were selected by five feature se-
lection techniques. The results show that coupling metrics are better than inheritance, cohesion, and 
size metrics in predicting change-prone modules.  

Table 1. Related works to change-proneness prediction 

Study Models Results 
Lindvall (1998) Statistical analysis  Large classes are more change-prone 
Arisholm et al. 
(2004) 

Multiple linear regression Positive correlation 

Koru and Tian 
(2005) 

Ranking and a clustering 
technique 

Correlation between highly changed classes and 
properties such as large size, high coupling, low cohesion, 
or deep inheritance 

Giger et al. (2012) Neural network A combination of  both outperforms using either one 
Lu et al. (2012) Statistical meta-analysis  Size metrics, coupling, and cohesion 
Elish et al. (2015) Ensemble methods Ensemble methods have better accuracy than individual 

models 
Yan et al. (2017) Clustering The proposed CLAMI+ slightly improves the CLAMI 

and unsupervised methods  
Malhotra and Jan-
gra (2017) 

10 ML and statistical 
models 

ML models are better than statistical 

L. Kumar et al. 
(2017) 

8 ML techniques Coupling metrics are better than inheritance, cohesion, 
and size metrics 

Zhu et al. (2018) Bagging and resampling  Bagging with resampling improves the prediction 
performance  

Liu et al. (2018) Unsupervised ML Cross-project prediction 
Catolino and Fer-
rucci (2019) 

Ensemble methods and  
ML methods 

Ensemble methods outperform 

Abbas et al. (2020) 10 single ML models  
And their combination 

Ensemble classifiers outperformed 

Catolino et al. 
(2020) 

Bad-smells measures The performance of  baseline change prediction models 
increased by an average of  10% in terms of  f-measure. 

Malhotra et al. 
(2021) 

11 feature selection 
techniques and three ML 
models. 

The feature selection techniques were effective in 
improving models and some were the best techniques. 

Zhu et al. (2022) CNN models CNN models outperform baseline models 
Bansal et al. (2022) Proposed an algorithm Better performance 
Alsolai and Roper 
(2022) 

4 ml Ensemble feature selection and sampling techniques 
improve results 

de Carvalho Silva 
et al. (2022) 

Change history and  
Four ML algorithms 

Random Forest showed the best, and smell-related 
information does not improve the models. 
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Zhu et al. (2018) have proposed to predict change-proneness using a combination of  bagging and 
resampling methods. The change-proneness was defined using partitioning methods based on box 
plots. Liu et al. (2018) proposed and evaluated a selective cross-project prediction of  fault-proneness 
on 14 open-source projects. The results were compared with two related change-proneness models. 
The model works in three phases: (1) estimates the unknown labels of  classes using an unsupervised 
model; (2) searches for the best match distribution in the source project to train a classifier; and (3) 
labels are predicted by a classifier and are evaluated and measured. The results show the proposed 
model improves on the previous change-proneness models. Catolino and Ferrucci (2019) have stud-
ied change-proneness prediction using ensemble methods and traditional ML methods. They found 
ensemble methods outperform the traditional ML methods. Abbas et al. (2020) proposed predicting 
change-proneness using object-oriented metrics. They studied the change-proneness using machine 
learning on a large dataset of  many commercial software systems. They also aim to identify which of  
the OO metrics are more necessary to predict change-prone classes. The authors proposed using var-
ious models (10 single) and their combination such as ensemble classifiers with voting, select-Best, 
and staking scheme. Ensemble classifiers outperformed the single models in predicting change-prone 
classes in software. 

Zhu et al. (2022) have conducted a study on using deep learning to predict change-proneness using 
convolutional neural networks. The results show that the CNN models in combination with the 
resampling methods perform better than the baseline methods. Bansal et al. (2022) proposed a cross-
projects change-proneness model. The focus was on identifying the most suitable projects using a 
proposed algorithm that provides the best prediction accuracy. Alsolai and Roper (2022) proposed 
change proneness models using many machine learning models (naive Bayes, support vector ma-
chines, k-nearest neighbors, and random forests) for seven datasets. They used different combina-
tions of  feature selection, sampling, and ensemble sampling techniques. The results found that the 
ensemble feature selection and sampling techniques have the best accuracy in predicting the fault-
prone classes. Singh and Agrawal (2023) collected changelogs and change requests from three open-
source software projects with the aim of  analyzing the change-prone of  classes. The research aims to 
identify dependencies of  change-prone classes that may help to manage the consequences of  
changes. This type of  research is on the applications of  change-proneness models and can utilize 
change-proneness prediction models to further analyze and identify dependencies in change. 

The necessity for new machine learning models in this kind of  research is evident from earlier publi-
cations. The use of  ensemble learning, and cross-project predictions, was a trend in most recent 
works on change-proneness. The use of  modern trends in prediction models, such as deep learning 
and various forms of  ensemble learning, is necessary. To include the most crucial features in models, 
it is also necessary to use feature selection and sampling of  unbalanced data. From a different angle, 
none of  these articles has taken software evolution into account; they have only looked at changes 
from the prior release. The question of  whether changes differ significantly between successive soft-
ware releases has not been examined by the authors. In addition, even if  the product has not been 
released officially, the developers want to know when changes turn into major ones. This might be a 
research trend to figure out how to quantify change more accurately to enhance the prediction mod-
els for change and change-proneness. For this kind of  job, it is also crucial to understand how to de-
fine the significance of  change. 

This research focuses on the trends in software evolution and growth in the long-term evolution of  
software. The study aims to understand how software evolution affects change-proneness and rede-
fine change-proneness from the evolution of  software. Knowing the number of  classes affected by 
software metrics is important in knowing how the software structure changes. Six well-known met-
rics are studied to measure coupling, cohesion, inheritance, response set of  a class, and complexity. 
This research investigates when these properties become significantly different. Activities that are re-
quired as results of  change, such as regression testing and change impact analysis, are necessary after 
every change. However, in very large systems these activities are time-consuming and therefore, I 

https://sciprofiles.com/profile/2101730
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need to know when it becomes appropriate to start such activities. Therefore, this research aims to 
study the evolution of  software from this perspective and view. 

RESEARCH METHODOLOGY 
Many software metrics, such as change-proneness or maintenance effort, have been proposed as sur-
rogates for software quality. Many studies have been conducted to investigate the relationship be-
tween metrics and change-proneness. On the other hand, more research into the relationship be-
tween metrics and evolution is needed to understand how software systems evolve and metrics grow 
significantly. The purpose of  this study is to investigate the significance of  software evolution by in-
vestigating the effect of  software changes on the properties of  software classes.  

To answer research questions, the evolution of  five large systems is being studied, and the differences 
between consecutive releases are being measured on a regular basis, i.e., every two weeks. The Wil-
coxon signed-rank test is used to determine the importance of  differences. The Wilcoxon signed-
rank test is a non-parametric statistical hypothesis test that is used to compare the significance of  the 
difference between two populations using two matched samples (Conover, 1999). The Wilcoxon test 
is used when the differences are non-normally distributed. The metric data for each version are com-
pared to the succeeding versions until a significant difference is discovered. The difference between 
the two versions is reported as a significant change. The maximum difference for all metrics is then 
used to select the snapshots at which change-proneness prediction models are built using five well-
known classifiers.  

DATA COLLECTION 
Many previous works have reported on software evolution research (Chatzigeorgiou & Melas, 2012; 
Israeli & Feitelson, 2010). Few, however, have reported the evolution regularly as D’Ambros et al. 
(2010). The authors gathered biweekly data from five large open-source systems. The systems have 
been measured over 90 times, for a total of  180 weeks. The authors compiled a number of  metrics 
for coupling, cohesion, inheritance, and complexity. The source code was obtained from the system 
repositories. Metrics were calculated using FAMIX models generated by the Moose tool. 

Collecting bi-weekly snapshots of  the systems for more than 90 snapshots is a time-consuming task, 
so the work is restricted to only five systems. These are large systems that are representative of  other 
large systems. 

• Eclipse JDT Core: Metrics were collected for 91 bi-weekly versions of  the system. JDT Core is 
the Java infrastructure of  the Java IDE. More information on JDT core is provided on the 
official website https://www.eclipse.org/jdt/core/  

• Eclipse PDE UI: Metrics were collected for 97 bi-weekly versions of  the system. The PDE 
UI provides tool sets to help in all development activities of  Eclipse components. More in-
formation on PDE is provided on the official website https://www.eclipse.org/pde/pde-ui/ 

• Equinox Framework: Metrics were collected for 91 bi-weekly versions of  the system. Equinox 
is mainly used for developing and delivering the OSGi framework implementation for all 
Eclipse products. More information on Equinox is provided on the official website 
http://www.eclipse.org/equinox/framework/  

• Lucene: Metrics were collected for bi-weekly versions of  the system. Lucene is a free and 
open-source information retrieval software library, originally written completely in Java. 
More information on Lucene is provided on the official website https://lucene.apache.org/  

• Mylyn: metrics were collected for 98 bi-weekly versions of  the system. Mylyn is an application lifecycle 
management framework for Eclipse. More information on Mylyn is provided on the official website 
http://www.eclipse.org/mylyn/  

https://www.eclipse.org/jdt/core/
https://www.eclipse.org/pde/pde-ui/
http://www.eclipse.org/equinox/framework/
https://lucene.apache.org/
http://www.eclipse.org/mylyn/
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SOFTWARE METRICS 
In this section, the change-proneness redefinition is discussed, and the OO metrics are described. 
The change-proneness is defined in previous works as the median of  differences between any con-
secutive releases of  software. If  the differences are larger than the median, then the instance is la-
beled as 1, otherwise as 0. This process is repeated for all instances in the second release. However, in 
this work, the statistical significance of  the difference between consecutive releases or snapshots are 
added to the definition of  change-proneness. This methodology works for either releases or snap-
shots of  software. Then the median of  the differences is used to mark an instance as change-prone if  
the changes are larger than the median of  change. 

The Chidamber and Kemerer (CK) suite assesses the internal quality of  a software product (Chidam-
ber & Kemerer, 1994). These metrics assess object-oriented software written in languages such as 
Java or C++. The six quality properties measured by the CK suite are coupling, cohesion, inheritance 
depth and breadth, class responsibility, and complexity. The CK metrics are defined as follows: 

• Coupling Between Objects (CBO): The number of  couplings between classes is counted by the 
CBO. CBO for each class is calculated by counting the other classes that are coupled to it. 

• Response for Class (RFC): The RFC metric counts a class’s responsibility set, which is repre-
sented by the number of  local methods and called methods. 

• Weighted Methods per Class (WMC): The WMC measures class complexity. The complexity of  a 
class is determined by adding the complexity of  its methods. 

• Depth of  Inheritance Hierarchy (DIT): The number of  classes descended from the inheritance’s 
root. 

• Number of  Children (NOC): The NOC metric counts the classes that directly inherit a class. 
The number of  children in a class indicates the number of  specializations and uses. As a re-
sult, understanding all specializations is critical for maintaining and testing the parent. 

• Lack of  Method Cohesion (LCOM): The LCOM metric assesses interconnection within a class. 
The interconnections track how data attributes are used in methods. LCOM is the difference 
between pairs of  methods that share data attributes (Q) and those that do not (P). The 
LCOM is calculated as follows: (P > Q) LCOM? (P - Q): 0. The LCOM metric assesses class 
structure cohesion. Low cohesive classes have a wide range of  functionalities, making them 
difficult to reuse and maintain. 

DESCRIPTIVE STATISTICS 
Table 2 displays the descriptive statistics for the number of  changed classes in the five systems. Col-
umn 2 displays the number of  classes at the end of  the measured evolution.   

Table 2. The change-proneness distribution for all systems 

System #Classes SLOC 
 
Domain 

Percentage of 
changed classes  Period Versions 

Eclipse JDT 997 >224k Development 64% 1.1.2005 - 
6.17.2008 91 

Equinox 
Framework 324 >39k Library 48% 1.1.2005 - 

6.25.2008 91 

Apache Lucene 691 >64k Library 46% 1.1.2005 - 
10.8.2008 99 

Mylyn 1862 >156k Development 47% 1.17.2005 - 
3.17.2009 98 

Eclipse PDE 1497 >146k Development 73% 1.1.2005 - 
9.11.2008 97 
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In Eclipse JDT, there were 64% changes among these classes. These statistics demonstrate that not 
all classes have evolved. Knowing when classes change significantly over time, on the other hand, is 
critical for regression testing and change impact analysis. The systems have various sizes as measured 
by the number of  classes and SLOC. Three systems are software development applications of  me-
dium to large, JDT, Mylyn, and PDE, whereas two can be considered small, Equinox and Lucene, 
which are software libraries for development. All systems under study are from one domain.  

MACHINE LEARNING MODELS AND PERFORMANCE EVALUATION 
In this study, I conduct our experiment on five well-known classification techniques. In the following, 
a brief  description of  each technique is provided:  

• Logistic Regression: The regression function LR was widely used to predict binary variables. 
The LR model is a regression model that works well with binary predictors (Hosmer & 
Lemeshow, 2000). The LR model is constructed from a logistic curve as a combination of  all 
metrics to predict the change-prone class. 

• Naïve Bayes (NB): NB is a simple classifier that was commonly used in software quality pre-
diction and has been used as a classifier for defect prediction in many studies (Lessmann et 
al., 2008; Menzies et al., 2007). NB is intuitive and simple to build. A naive Bayes classifier is 
a supervised learning algorithm based on applying Bayes’ theorem. Naïve Bayes considers 
the variables as conditionally independent given the predicted values. 

• Nearest neighbor (kNN): Nearest neighbor classification is a type of  instance-based learning, and 
it simply stores instances of  the training data. kNN assigns the dominant label of  the closest 
group of  k objects in the training set. kNN uses the distance (similarity) metric to find the 
nearest neighbors and assigns the label that has the majority class (Aha et al., 1991). The 
5NN was selected as a classifier that finds the distance with the nearest 5 instances and se-
lects the class with the majority. 

• Support Vector Machine (SVM): SVM uses hyperplanes (works even when the data are not line-
arly separable) to find the best function that discriminates between two classes (change-
prone and not change-prone) by maximizing the margin between the two classes. SVM finds 
the maximum margin hyperplane that ensures generalizability (Burges, 1998). SVM models 
are effective in high-dimensional spaces. 

• Decision trees (CART): CART is another classifier that builds decision trees using the Gini di-
versity index. CART predicts classes by learning decision rules inferred from the data set.  
The CART grows recursively by partitioning the training data set into subsets with similar 
values for the class. The CART algorithm grows the tree by conducting an exhaustive search 
of  all attributes (i.e., metrics) and all possible splitting values, selecting the split that reduces 
impurity in each node (Ebert, 1996).   

Measuring the performance of  the prediction models is vital to compare the resulting models. There 
are many performance measures including accuracy, precision, recall, and F-measure. In comparison, 
the results of  the F-measure are presented and discussed, which provides a score that incorporates 
both precision and recall measures into the individual score. The following is how precision and re-
call are calculated: 

Precision = True Positives / (True Positives + False Positives) (1) 

Precision is the ratio between the True Positives (instances correctly predicted as change-prone) and 
all instances that were predicted as change-prone. The precision measures how many of  the found 
results are change-prone. 

Recall = True Positives / (True Positives + False Negatives) (2) 
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The recall measures how a model correctly identifies existing change-prone instances. Thus, for all 
the instances that were changed, recall tells us how many I correctly identified as having changed. 

The F-measure is the harmonic mean of  both the precision and recall and summarizes both values.  

F-measure = 2 · Precision · Recall/(Precision + Recall) (3) 

 

RESULTS ANALYSIS 
In the following two sections, first, how to find the significant difference between several software 
snapshots is provided. The goal is to determine when differences become statistically significant. In 
the second section, change-proneness prediction using a variety of  machine-learning techniques are 
presented. 

FINDING CHANGE SIGNIFICANCE 
The research questions are answered in the following using both descriptive and statistical methods.  

RQ1: Which metrics are more affected by software evolution? 

For each release, I count the number of  changed files in each metric. As a result, more than 89 values 
for each system are studied. Line charts and box plots are the best statistics for analyzing the results. 
Figure 1 depicts the evolution of  the five systems as line charts. It can discover when significant 
changes occur in the system’s evolution using line charts. For example, in Eclipse evolution at period 
20, the DIT metric has increased significantly, indicating that 243 classes have changed their inher-
itance depth. The graph shows that metrics change all the time, but the number of  affected classes 
does not always remain constant. This pattern demonstrates that systems evolve significantly at some 
points during the project’s lifespan.  

The line chart depicts several Equinox peaks where changes in many metrics are significant. This 
graph illustrates how metrics can change simultaneously, i.e., cyclic patterns. The Lucene line chart 
shows some peaks where all metrics change, indicating significant changes. The final line chart is for 
PDE and shows many fluctuations in the metrics’ evolution. Changes in the evolution of  software 
have a greater impact on the metrics at certain points in time (peaks in Figure 1) than at others. 

Boxplots in Figure 2 depict the range of  evolution’s effect on the six metrics. DIT and NOC appear 
to be the least affected by evolution. The use of  line and box plots together is essential for under-
standing the local points where evolution is important and determining which metrics are more af-
fected by evolution. Among metrics, RFC and WMC are the most affected. Evolution has had the 
greatest impact on large classes (i.e., God classes). 

  

https://en.wikipedia.org/wiki/F1_score
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Figure 1. The line charts for the five systems 
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Figure 2. Boxplots for the five systems 
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RQ2: when does the software quality change significantly?  

I used the Wilcoxon signed rank test to determine the difference between the two snapshots in order 
to answer this question. The comparison with subsequent snapshots is repeated until a significant dif-
ference is found. The time it takes for differences to become statistically significant is calculated and 
reported. Table 3 displays the average number of  weeks with significant differences. Based on the re-
sults shown in Table 3, the research questions RQ2.1 to RQ2.6 in numbers are answered. For RQ2.1, 
the CBO metric requires 3 to 4 weeks to achieve significant differences, which is considered fast to 
change. For RQ2.2, the LCOM metric needs more time to change than CBO but with a slight in-
crease. Therefore, lack of  cohesion is fast to change as well. For RQ2.3 and 2.3 for the inheritance 
metrics, the change is very slow, which means developers do not change the inheritance depth and 
breadth frequently. For example, it takes NOC 18 weeks to achieve significant differences in Equi-
nox. RQ3.5 asked about how the responsibilities of  a class have changed. The responsibility set 
changes frequently. RQ2.6 asks about how significant the changes in the complexity of  classes. The 
complexity shows the most frequency of  change as the responsibility of  a class.  

 

Table 3. The average number of  bi-weeks to reach significant differences 

  CBO LCOM DIT NOC RFC WMC 
Eclipse 2.02 2.23 7.83 6.77 1.39 1.34 
Equinox 3.35 3.88 8.95 9.00 3.21 2.95 
Lucene 2.56 3.11 3.34 3.03 2.86 2.60 
Mylyn 1.26 1.30 1.98 1.80 1.30 1.17 
PDE 1.46 1.71 2.27 2.36 1.41 1.43 

 

 

Box plots, in Figure 3, depict which metrics achieve the fastest significant differences. Knowing 
which metrics are affected first provides software engineers with insights into how software evolves 
and how object-oriented design is maintained. It can be seen that inheritance hierarchies are slower to 
change and thus have the least impact among object-oriented metrics. Many previous works have 
shown that the inheritance metrics have lower prediction performance for fault prediction (e.g., 
Shatnawi & Mishra, 2021). DIT and NOC require the most weeks to achieve significant differences. 
These metrics are not as frequently updated as other metrics. The complexity and responsibilities of  
a class are the most frequently changed. Therefore, they are supposed to have more effect on soft-
ware quality. These metrics measure the internal properties of  a class. The coupling and cohesion 
measures change significantly every four weeks on average and these metrics also have fast change 
but less than the responsibilities and complexity of  a class. 
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Figure 3. Boxplots for the significance of  change measured biweekly 

CHANGE-PRONENESS PREDICTION 
Change-proneness prediction is critical for engineers to predict which classes are more prone to 
changes, allowing for more effective and efficient resource allocation for future maintenance. The re-
search questions specified the number of  weeks required to achieve significant changes. I use 18 
weeks to divide the data sets into training and testing datasets. As a result, I have ten snapshots to 
consider as significant software evolution. Changes from the previous snapshot are calculated for 
each snapshot, and a class is labeled as change-prone if  it was changed more than the median of  
changes for all classes in a system. Table 4 displays the ten snapshots, as well as the percentage of  
change-prone classes identified in each. For example, at snapshot 9 (after 18 weeks), I discovered that 
a large proportion of  classes in Eclipse (36%), PDE (50%), and Equinox (62%) were change-prone. 
Lucene and Mylyn were discovered unaltered until after snapshot 36. As a result, several prediction 
models were created at regular intervals for each system (18 weeks or 9 biweekly snapshots).  

For each system, I have ten snapshots. To develop and test prediction models. Models were trained 
on each snapshot and tested for their ability to predict the change-prone classes in the following 
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snapshot. As a result, I have nine models for each classifier and system. Tables 5, 6, 7, 8, and 9 show 
the results of  change-propones predictions for the five systems, respectively. The results of  the five 
classifiers are presented in each table. For all five classifier snapshots, the F-measure values for 
Eclipse, PDE, and Equinox are large as shown in Tables 5, 6, and 7, respectively. I notice that predic-
tion performance is lower for early snapshots and improves for later snapshots. This is more noticea-
ble in the Mylyn system as shown in Table 9. As a result, I can conclude that knowing when to make 
significant changes can lead to improved performance in change-proneness models. With high preci-
sion or recall, these models predict the change in the next snapshot. 

Table 4.  Statistics of  change-prone classes among selected snapshots (biweekly) 

System  R9 R18 R27 R36 R45 R54 R63 R72 R81 R90 
Eclipse #classes  874 882 921 935 944 950 952 954 963 997 
 %change-

prone 36% 22% 31% 34% 16% 19% 23% 12% 20% 21% 
PDE #classes 800 813 944 1066 1181 1292 1340 1420 1474 1494 
 %change-

prone 50% 26% 40% 39% 27% 30% 35% 25% 56% 13% 
Equinox #classes 186 194 194 225 224 271 271 290 302 324 
 %change-

prone 62% 54% 28% 47% 17% 36% 17% 23% 18% 24% 
Lucene #classes 344 344 344 511 511 572 641 694 563 615 
 %change-

prone 0% 0% 0% 47% 0% 18% 19% 20% 19% 19% 
Mylyn #classes 0 0 0 0 1077 1211 1309 1437 1702 1863 
 %change-

prone 0 0 0 0 100% 37% 49% 52% 36% 27% 
 

 

Table 5. F-measure values for the five classifiers for Eclipse snapshots 

Training Testing LR NB KNN SVM DT 

9 18 89% 89% 80% 89% 80% 
18 27 85% 84% 82% 83% 82% 
27 36 83% 83% 81% 81% 81% 
36 45 91% 91% 82% 92% 81% 
45 54 91% 90% 87% 90% 88% 
54 63 89% 88% 86% 88% 87% 
63 72 94% 94% 88% 94% 88% 
72 81 90% 90% 89% 89% 89% 
81 90 90% 89% 86% 89% 86% 
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Table 6. F-measure values for the five classifiers for PDE snapshots 

Training Testing LR NB KNN SVM DT 

9 18 77% 84% 71% 77.0% 73.9% 
18 27 76% 75% 71% 72.8% 71.8% 
27 36 77% 76% 67% 71.4% 69.4% 
36 45 79% 82% 69% 74.5% 71.4% 
45 54 83% 82% 77% 79.1% 77.8% 
54 63 81% 81% 71% 75.8% 73.5% 
63 72 82% 84% 75% 79.0% 76.8% 
72 81 62% 64% 60% 62.0% 61.0% 
81 90 69% 86% 63% 73.0% 67.8% 

 

Table 7. F-measure values for the five classifiers for Equinox snapshots 

Training Testing LR NB KNN SVM 
Decision 
Trees 

9 18 57% 69% 57% 22.0% 58% 
18 27 78% 83% 65% 79.8% 65% 
27 36 72% 73% 70% 72.2% 66% 
36 45 82% 89% 71% 85.6% 71% 
45 54 80% 80% 76% 79.4% 77% 
54 63 91% 90% 76% 88.9% 77% 
63 72 89% 88% 85% 87.9% 85% 
72 81 91% 89% 85% 91.2% 86% 
81 90 88% 88% 82% 87.0% 83% 

 

Table 8. F-measure values for the five classifiers for Lucene snapshots 

Training Testing LR NB KNN SVM DT 
54 63 89.5% 87% 83% 90% 84% 
63 72 89.3% 88% 83% 89% 83% 
72 81 89.6% 88% 83% 90% 84% 
81 90 89.3% 88% 84% 89% 85% 

 

Table 9. F-measure values for the five classifiers for Mylyn snapshots 

Training Testing L.R NB KNN SVM DT 
54 63 71% 70% 66.1% 69% 66% 
63 72 67% 66% 63.2% 63% 63% 
72 81 67% 76% 60.6% 73% 62% 
81 90 82% 83% 74.6% 85% 75% 

DISCUSSION OF RESULTS 
The proposed work is different from previous literature in many folds: 

i. The metrics are measured bi-weekly for the systems under investigation. In addition, a 
snapshot can be considered for different types of  versioning including a regular candi-



Shatnawi 

785 

date, or milestone release. Therefore, the dependent variable (change-proneness) is de-
fined with the help of  a statistical method to determine the significance of  differences 
between biweekly snapshots. The change-proneness is not measured until there is a sig-
nificance of  the change.  

ii. Metrics are validated individually using evolution and statistical tests to understand how 
strongly they are affected by evolution and therefore they have more correlation with 
change. 

iii. The validation of  the results is consistent with how the change-proneness is defined. 
The models are trained on a snapshot and tested on the next snapshot for better gener-
alizability of  the models. 

In comparison with the previous works on software evolution, the focus was on the magnitude and 
direction of  the growth of  large systems only such as Linux systems (Chatzigeorgiou & Melas, 2012; 
Israeli & Feitelson, 2010; Mens & Demeyer, 2008). In this research, the evolution of  software is 
measured, so the work aims to understand the evolution from a different perspective. The work in-
vestigates and finds when differences become statistically significant, and studies different OO prop-
erties such as coupling, cohesion, complexity, and inheritance instead of  merely studying the size of  
software using LOC. The findings are also consistent with previous works. It advises using coupling, 
cohesion, and complexity more than inheritance metrics as they do not change frequently unless the 
software is measured for longer periods. For the aim of  building a change prediction model, a split at 
18 weeks is selected to split data into training and testing datasets. The results of  the models were ex-
cellent when measured using F-measure scores. Therefore, the proposed research questions are an-
swered. 

In comparison with previous literature (Malhotra & Khanna, 2019), the results in this work use F-
measure while most previous works report accuracy and AUC scores. The models have a very good 
score for most models. It is also observed that the models’ performance improves for later snapshots 
as shown in the results.  

THREATS TO VALIDITY 
Construct validity is concerned with the validity of  the data sets. The data sets are open-source and 
can be validated by other researchers. An open-source tool was used to measure the software metrics, 
which can be used for other purposes. The metrics are calculated every two weeks, which is sufficient 
for answering the research questions. However, how a metric tool defines and calculates metrics 
could be a concern as there might be slight to large differences among different tools. In addition, 
the definition of  change-proneness is more generic and can be used for both a snapshot or a release 
(or candidate release or milestone). 

Internal validity is the extent to which research questions are answered by data sets under investiga-
tion. Although investigating five systems, they are large and represent both open-source and com-
mercial systems. These systems are widely used in both open-source and industrial settings. 

External validity is concerned with the extent to which the findings and conclusions can be general-
ized to other types of  systems. The systems are written in Java, and the results can be applied to 
other object-oriented applications. However, because these systems are built using the object-ori-
ented methodology, the findings of  this study may not be applicable to other methodologies, such as 
procedural and aspect-oriented. In addition, all systems are from one domain, i.e., development sys-
tems, which makes the results generalizable to these types of  systems. However, these are complex 
systems, and usually, this applies to similar domains. 
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CONCLUSION 
Software evolution is important because it persists after production. This evolution affects the 
change-proneness of  classes and predicting which classes are going to change in the future is im-
portant in software project management. In addition, the evolution patterns in software reveal a lot 
about the system’s quality. Understanding the evolution of  software is critical to understanding the 
future of  software production activities such as regression testing. Therefore, the evolution of  five 
large open-source systems is studied in order to understand software evolution and how it affects 
changes in software. Therefore, change-proneness is redefined from studying software evolution. A 
change-proneness variable is proposed that is derived from changes on many snapshots for a long 
time. The change-proneness is considered only for the snapshots that become statistically different as 
tested using the Wilcoxon test. Then ML models are built for change-proneness prediction using ob-
ject-oriented metrics and tested on the next snapshot. CK metrics were chosen as a well-known suit 
and a representative of  software metrics that measure different aspects of  software structure and 
thus represent different software qualities. To achieve these objectives, more than 89 measurements 
were taken at biweekly intervals on the systems under investigation. Therefore, the experiment was 
repeated many times in this interval. Each time differences were found, the change-proneness was 
trained and tested on the next different snapshot.   

First, to understand the impact of  evolution on software metrics, line charts, and boxplots were used. 
The findings of  this study show that object-oriented metrics can be used to study software evolution. 
Peaks in line charts show metrics changing significantly over short time periods but less so over 
longer time periods. The metrics do not demonstrate the same degree of  change. Other metrics 
evolve faster than inheritance metrics. The metrics do not have to change at the same time, and peaks 
for the same metrics may coincide, indicating large updates. 

The systems evolved on a regular basis, but the impact of  changes requires at least three weeks for 
most metrics and more for inheritance metrics. The findings of  this study shed more light on the 
evolution of  software structure. The results show that studying software growth solely through lines 
of  code is insufficient and that other metrics must be considered when studying software evolution. 
Knowing when software properties like coupling, cohesion, size, and complexity change will drive 
effort estimation for software engineering activities and aid in the planning of  future software re-
leases, as well as how testing like regression testing and maintenance activities like refactoring can be 
directed. Therefore, this analysis answers RQ1. Using this methodology, it is known when changes 
become significant, which metrics become significantly changed faster, and the appropriate time for 
each metric change is known. Based on these results, change-prediction models were trained and 
tested appropriately at the suggested intervals and the results of  the ML models were satisfying and 
good enough for most systems 

For future work, I aim to study ensemble learning in change-proneness and compare different mod-
els of  ensembles. As found by a systematic review study of  ensemble techniques for software defect 
and change prediction (Khanna, 2022), there is a need for more studies on ensemble learning for 
both fault-proneness and change-proneness prediction. In a systematic mapping study on change im-
pact analysis, Kretsou et al. (2021) found that change-proneness prediction and its effect on change 
impact analysis is not fully explored.   

AVAILABILITY OF DATA 
The authors confirm that the data supporting the findings of  this study are available within the work 
of  D’Ambros et al. (2010) and its supplementary materials. The original datasets are publicly available 
at https://bug.inf.usi.ch/index.php 
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