

Volume 18, 2023

Accepting Editor Maureen Tanner│ Received: June 26, 2023│ Revised: August 19, September 16, September
21, 2023 │ Accepted: September 22, 2023.
Cite as: Shatnawi, R. (2023). Predicting software change-proneness from software evolution using machine
learning methods. Interdisciplinary Journal of Information, Knowledge, and Management, 18, 769-790.
https://doi.org/10.28945/5193

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

PREDICTING SOFTWARE CHANGE-PRONENESS FROM
SOFTWARE EVOLUTION USING MACHINE LEARNING

METHODS
Raed Shatnawi Jordan University of Science and

Technology, Irbid, Jordan
raedamin@just.edu.jo

ABSTRACT
Aim/Purpose To predict the change-proneness of software from the continuous evolution

using machine learning methods. To identify when software changes become
statistically significant and how metrics change.

Background Software evolution is the most time-consuming activity after a software re-
lease. Understanding evolution patterns aids in understanding post-release
software activities. Many methodologies have been proposed to comprehend
software evolution and growth. As a result, change prediction is critical for
future software maintenance.

Methodology I propose using machine learning methods to predict change-prone classes.
Classes that are expected to change in future releases were defined as change-
prone. The previous release was only considered by the researchers to define
change-proneness. In this study, I use the evolution of software to redefine
change-proneness. Many snapshots of software were studied to determine
when changes became statistically significant, and snapshots were taken bi-
weekly. The research was validated by looking at the evolution of five large
open-source systems.

Contribution In this study, I use the evolution of software to redefine change-proneness.
The research was validated by looking at the evolution of five large open-
source systems.

Findings Software metrics can measure the significance of evolution in software. In
addition, metric values change within different periods and the significance
of change should be considered for each metric separately. For five classifi-
ers, change-proneness prediction models were trained on one snapshot and
tested on the next. In most snapshots, the prediction performance was excel-
lent. For example, for Eclipse, the F-measure values were between 80 and 94.

https://doi.org/10.28945/5193
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:raedamin@just.edu.jo

Predicting Software Change-Proneness

770

For other systems, the F-measure values were higher than 75 for most snap-
shots.

Recommendations
for Practitioners

Software change happens frequently in the evolution of software; however,
the significance of change happens over a considerable length of time and
this time should be considered when evaluating the quality of software.

Recommendation
for Researchers

Researchers should consider the significance of change when studying soft-
ware evolution. Software changes should be taken from different perspec-
tives besides the size or length of the code.

Impact on Society Software quality management is affected by the continuous evolution of pro-
jects. Knowing the appropriate time for software maintenance reduces the
costs and impacts of software changes.

Future Research Studying the significance of software evolution for software refactoring
helps improve the internal quality of software code.

Keywords software evolution, software metrics, change-proneness, machine learning

INTRODUCTION
Software evolution is inevitable for all software applications and to improve software quality. Accord-
ing to the ISO9000 definition, quality is defined as a degree “to which a set of inherent characteris-
tics of an object fulfills requirements” (Témolé & Atanasova, 2023). Software quality describes the
desirable attributes of software products and is paramount to the success of software projects, in-
cluding software in maintenance. Software maintenance is a paramount activity in the software pro-
cess and costs more than 50% of the total project costs (Malhotra & Khanna, 2019), accounting for
50–80% of software production expenses in the United States (Carr & Wagner, 2002). Software
maintenance is driven by several factors including user requests, emerging technologies, and new plat-
forms (Rajlich, 2014; Xie et al., 2017). Software maintenance activities have different types including
adding new features, quality improvements, and system adaptation to new environments. These types
of changes cause the software to grow, and changes make classes more prone to change. Understand-
ing evolution patterns in software helps engineers understand how software grows. Software growth
can be used in maintenance activities such as corrective maintenance for the next version or release
(Kemerer & Slaughter, 1999). In previous research, software evolution trends were modeled using
mathematical models, such as linear and sublinear models. These models provide insights into the
growth of software. Evolution trends can be used to understand software quality and help in control-
ling the quality of software (Chatzigeorgiou & Melas, 2012; Israeli & Feitelson, 2010; Mens &
Demeyer, 2008). For example, evolution metrics were used to build fault-prediction models using
machine learning and regression classifiers (Illes-Seifert & Paech, 2010; Kaur et al., 2016). In addi-
tion, understanding software evolution helps to improve the maintainability of future releases. There-
fore, more effective and efficient evolution analysis tools are required (Yu & Mishra, 2013). Agrawal
and Singh (2020) studied the history of change and how ripple change happens. This study helps re-
searchers in studying the future changeability pattern.

Keeping software in high quality is vital for large software systems that evolve for a long time.
Researchers have studied and investigated how to improve software quality using important quality
attributes such as fault-proneness (Illes-Seifert & Paech, 2010), maintainability (Giray et al., 2023),
and reusability (P. Kumar et al., 2022). Software systems continue to grow while the quality of these
systems continues to either improve or degrade (Agrawal & Singh, 2020). However, when software
changes become significant it is not studied in previous literature. The research aims to study the
relationship between software quality as measured using internal software metrics and the evolution
of software using machine learning models to know when internal properties of software, such as

Shatnawi

771

coupling, and cohesion, become significantly different. In addition, using machine learning helps
automate the change prediction and reduces the human-centric efforts of prioritizing the tasks of
software development and maintenance. Hence, software activities affected by change, such as
regression testing, refactoring, and maintenance, are directed to most change-prone classes.

Change-proneness was measured in the literature (e.g., Abbas et al., 2020; Bansal et al., 2022; Cato-
lino & Ferrucci, 2019; Zhu et al., 2022) by taking differences between consecutive releases without
considering the significance of the change. Change-proneness has been studied previously without
considering the significance of software evolution or change at specific intervals or time windows.
For a better definition of change-proneness, this research proposes to measure evolution using two
methods: the number of files affected by evolution and the time when static metrics change signifi-
cantly. These two methods are explored using both descriptive and visual analytics to identify the pe-
riods of significant changes in six object-oriented metrics. These metrics measure coupling, cohesion,
inheritance depth and breadth, complexity, and response set for a class. The study was applied to the
evolution of five large open-source systems that have evolved for more than three years (more than
90 biweekly snapshots). The results were used to build change-proneness prediction for ten snap-
shots that were identified as significantly changed from previous snapshots. Five well-known machine
learning classifiers – Logistic Regression (LR), Naïve Bayes (NB), Nearest Neighbors (NN), Support
Vector Machines (SVM), and Decision Trees (CART) – are used to provide evidence of change-
proneness prediction. The training of each model was considered on one snapshot and tested on the
next snapshot of software for a better validation of the model’s performance. The performance of
these classifiers was measured using precision, recall, and F-measure. The results were high and can
be considered helpful in predicting future change-prone classes in software. The collected data were
provided publicly for further investigation by D’Ambros et al. (2010).

Two research questions are proposed to understand software evolution using metrics.

RQ1: Which metrics are most affected by software evolution?

The research aims to know how software evolution affects software quality. Static internal metrics,
such as object-oriented metrics, are used to assess software quality. Therefore, this research proposes
measuring the effect of metrics on software quality by determining which classes have changed be-
tween two consecutive snapshots of software. Each metric’s change effect is calculated separately.
The number of classes that were different in two consecutive snapshots are counted, i.e., every two
weeks, for each metric. The effect of evolution on each metric is graphically depicted with line charts
and summarized with boxplots. Charts compare the six metrics and determine which are most af-
fected by the change.

RQ2: When does the software quality change significantly?

For example, it is vital to know when couplings become significantly different, and whether couplings
increase or decrease over time.

The most expensive activity in software production is software maintenance and evolution (Erlikh,
2000). Understanding how software evolves and when software differs significantly in size and quality
is critical for understanding the impact of change on software. Understanding the impact of software
evolution on software quality also requires identifying differences in other quality attributes. This re-
search aims to answer the following sub-questions:

RQ2.1. When does coupling in software become statistically different from a measured version?

RQ2.2. When does software cohesion become statistically different from a measured version?

RQ2.3. When does the depth of inheritance in software become statistically different from a
measured version?

RQ2.4. When does the breadth of inheritance in software become statistically different from a
measured version?

Predicting Software Change-Proneness

772

RQ2.5. When does a set of responsibilities in software become statistically different from a
measured version?

RQ2.6. When does the complexity of software become statistically different from a measured
version?

The rest of the paper is structured as follows. In the next section, the related work is discussed and
compared to previous work on software evolution and growth. Then the research methodology is
presented including data collection and processing. The results of the research questions are then dis-
cussed and analyzed, and the change-proneness classifiers are built and evaluated. Finally, the work is
concluded.

RELATED WORK
The change history of software systems has been studied by many previous researchers to under-
stand software maintainability. Authors have studied change at different levels: implementation and
design. Implementation changes were studied for the line of code changed, added, or deleted in soft-
ware (Herraiz et al., 2013), while design and architecture changes were studied at the function and
class levels such as method body changes, method additions, method deletions, and signature changes
(Wermelinger et al., 2008). The study of software evolution helps in understanding software design
and evolution patterns (Xing & Stroulia, 2004). Many previous works have shown a growth in the
size or complexity of software systems stability (Chatzigeorgiou & Melas, 2012; Israeli & Feitelson,
2010). Researchers have studied the evolution of many properties of software. They found that mi-
nor releases are introduced usually to restore software familiarity and stability (Israeli & Feitelson,
2010). Chatzigeorgiou and Melas (2012) studied the growth in coupling measured from the network
properties of systems. The authors found an exponential relationship between coupling and release
time. However, the exponent was close to 1 and therefore the relationship is close to linear. The evo-
lution of software was not utilized directly to predict software quality attributes such as change
proneness.

Change-proneness prediction is studied by many researchers using regression and machine learning
methods to classify classes into either change-prone or not change-prone as shown studies summa-
rized in Table 1. Lindvall (1998) has studied the correlation between metrics and maintenance efforts.
Lindvall also studied the correlation between software size and change-proneness. Arisholm et al.
(2004) studied the dynamic coupling metrics’ correlation with change-proneness and found a signifi-
cant correlation. Koru and Tian (2005) investigated the correlation of the highest values of metrics
with highly changed classes. The authors collected the change count from CVS as well as 51 metrics
for Mozilla and 46 metrics for OpenOffice. They found a correlation between highly changed classes
and properties such as large size, high coupling, low cohesion, or deep inheritance. Giger et al. (2012)
have proposed to predict change-prone classes using a combination of OO metrics and social net-
work analysis. The study used neural network models to predict change-proneness on either code
metrics or social analysis metrics and found that a combination of both outperforms using either
one. Lu et al. (2012) have studied the prediction of change-proneness on 102 Java systems using 62
OO metrics. The authors used statistical meta-analysis methods to predict change-proneness. In this
study, changes between two software releases were measured from two consecutive releases. Change-
proneness was measured by considering classes as change-prone if one change was detected from the
previous version of the software, otherwise not change-prone. Size metrics, coupling, and cohesion
exhibited discrimination between change-prone and not change-prone, while inheritance metrics
were poor in discriminating between change-prone and not change-prone. Elish et al. (2015) con-
ducted maintenance efforts and change-proneness prediction using advanced techniques such as en-
semble methods. The authors performed classification on maintenance data. This empirical study
compared individual prediction models with ensemble methods. The authors found that ensemble
methods have better accuracy than individual models across datasets. Yan et al. (2017) proposed a

Shatnawi

773

new self-learning method for change-proneness prediction. The authors applied unsupervised learn-
ing methods, including clustering, labeling, metrics selection, and instance selection, to predict
change-prone classes. The study was conducted on the CK metrics in addition to dynamic coupling
metrics. Malhotra and Jangra (2017) have studied the prediction of change-proneness of classes us-
ing object-oriented metrics. The authors conducted 10 machine learning techniques and compared
the performance of the resulting models with a statistical model. The results were similar in the two
types of classifications. The study was conducted on two open-source systems built in Java. L. Ku-
mar et al. (2017) studied a large set of software metrics as predictors of change-proneness. The mod-
els were built for eight machine learning techniques and the features were selected by five feature se-
lection techniques. The results show that coupling metrics are better than inheritance, cohesion, and
size metrics in predicting change-prone modules.

Table 1. Related works to change-proneness prediction

Study Models Results
Lindvall (1998) Statistical analysis Large classes are more change-prone
Arisholm et al.
(2004)

Multiple linear regression Positive correlation

Koru and Tian
(2005)

Ranking and a clustering
technique

Correlation between highly changed classes and
properties such as large size, high coupling, low cohesion,
or deep inheritance

Giger et al. (2012) Neural network A combination of both outperforms using either one
Lu et al. (2012) Statistical meta-analysis Size metrics, coupling, and cohesion
Elish et al. (2015) Ensemble methods Ensemble methods have better accuracy than individual

models
Yan et al. (2017) Clustering The proposed CLAMI+ slightly improves the CLAMI

and unsupervised methods
Malhotra and Jan-
gra (2017)

10 ML and statistical
models

ML models are better than statistical

L. Kumar et al.
(2017)

8 ML techniques Coupling metrics are better than inheritance, cohesion,
and size metrics

Zhu et al. (2018) Bagging and resampling Bagging with resampling improves the prediction
performance

Liu et al. (2018) Unsupervised ML Cross-project prediction
Catolino and Fer-
rucci (2019)

Ensemble methods and
ML methods

Ensemble methods outperform

Abbas et al. (2020) 10 single ML models
And their combination

Ensemble classifiers outperformed

Catolino et al.
(2020)

Bad-smells measures The performance of baseline change prediction models
increased by an average of 10% in terms of f-measure.

Malhotra et al.
(2021)

11 feature selection
techniques and three ML
models.

The feature selection techniques were effective in
improving models and some were the best techniques.

Zhu et al. (2022) CNN models CNN models outperform baseline models
Bansal et al. (2022) Proposed an algorithm Better performance
Alsolai and Roper
(2022)

4 ml Ensemble feature selection and sampling techniques
improve results

de Carvalho Silva
et al. (2022)

Change history and
Four ML algorithms

Random Forest showed the best, and smell-related
information does not improve the models.

https://sciprofiles.com/profile/2101730
https://sciprofiles.com/profile/author/MnpFaEhPcEZHUnh1ZHo3bHRLckNtdkNqL1hpUnR4dngzOEJlNHFKV3llMD0=

Predicting Software Change-Proneness

774

Zhu et al. (2018) have proposed to predict change-proneness using a combination of bagging and
resampling methods. The change-proneness was defined using partitioning methods based on box
plots. Liu et al. (2018) proposed and evaluated a selective cross-project prediction of fault-proneness
on 14 open-source projects. The results were compared with two related change-proneness models.
The model works in three phases: (1) estimates the unknown labels of classes using an unsupervised
model; (2) searches for the best match distribution in the source project to train a classifier; and (3)
labels are predicted by a classifier and are evaluated and measured. The results show the proposed
model improves on the previous change-proneness models. Catolino and Ferrucci (2019) have stud-
ied change-proneness prediction using ensemble methods and traditional ML methods. They found
ensemble methods outperform the traditional ML methods. Abbas et al. (2020) proposed predicting
change-proneness using object-oriented metrics. They studied the change-proneness using machine
learning on a large dataset of many commercial software systems. They also aim to identify which of
the OO metrics are more necessary to predict change-prone classes. The authors proposed using var-
ious models (10 single) and their combination such as ensemble classifiers with voting, select-Best,
and staking scheme. Ensemble classifiers outperformed the single models in predicting change-prone
classes in software.

Zhu et al. (2022) have conducted a study on using deep learning to predict change-proneness using
convolutional neural networks. The results show that the CNN models in combination with the
resampling methods perform better than the baseline methods. Bansal et al. (2022) proposed a cross-
projects change-proneness model. The focus was on identifying the most suitable projects using a
proposed algorithm that provides the best prediction accuracy. Alsolai and Roper (2022) proposed
change proneness models using many machine learning models (naive Bayes, support vector ma-
chines, k-nearest neighbors, and random forests) for seven datasets. They used different combina-
tions of feature selection, sampling, and ensemble sampling techniques. The results found that the
ensemble feature selection and sampling techniques have the best accuracy in predicting the fault-
prone classes. Singh and Agrawal (2023) collected changelogs and change requests from three open-
source software projects with the aim of analyzing the change-prone of classes. The research aims to
identify dependencies of change-prone classes that may help to manage the consequences of
changes. This type of research is on the applications of change-proneness models and can utilize
change-proneness prediction models to further analyze and identify dependencies in change.

The necessity for new machine learning models in this kind of research is evident from earlier publi-
cations. The use of ensemble learning, and cross-project predictions, was a trend in most recent
works on change-proneness. The use of modern trends in prediction models, such as deep learning
and various forms of ensemble learning, is necessary. To include the most crucial features in models,
it is also necessary to use feature selection and sampling of unbalanced data. From a different angle,
none of these articles has taken software evolution into account; they have only looked at changes
from the prior release. The question of whether changes differ significantly between successive soft-
ware releases has not been examined by the authors. In addition, even if the product has not been
released officially, the developers want to know when changes turn into major ones. This might be a
research trend to figure out how to quantify change more accurately to enhance the prediction mod-
els for change and change-proneness. For this kind of job, it is also crucial to understand how to de-
fine the significance of change.

This research focuses on the trends in software evolution and growth in the long-term evolution of
software. The study aims to understand how software evolution affects change-proneness and rede-
fine change-proneness from the evolution of software. Knowing the number of classes affected by
software metrics is important in knowing how the software structure changes. Six well-known met-
rics are studied to measure coupling, cohesion, inheritance, response set of a class, and complexity.
This research investigates when these properties become significantly different. Activities that are re-
quired as results of change, such as regression testing and change impact analysis, are necessary after
every change. However, in very large systems these activities are time-consuming and therefore, I

https://sciprofiles.com/profile/2101730
https://sciprofiles.com/profile/author/MnpFaEhPcEZHUnh1ZHo3bHRLckNtdkNqL1hpUnR4dngzOEJlNHFKV3llMD0=

Shatnawi

775

need to know when it becomes appropriate to start such activities. Therefore, this research aims to
study the evolution of software from this perspective and view.

RESEARCH METHODOLOGY
Many software metrics, such as change-proneness or maintenance effort, have been proposed as sur-
rogates for software quality. Many studies have been conducted to investigate the relationship be-
tween metrics and change-proneness. On the other hand, more research into the relationship be-
tween metrics and evolution is needed to understand how software systems evolve and metrics grow
significantly. The purpose of this study is to investigate the significance of software evolution by in-
vestigating the effect of software changes on the properties of software classes.

To answer research questions, the evolution of five large systems is being studied, and the differences
between consecutive releases are being measured on a regular basis, i.e., every two weeks. The Wil-
coxon signed-rank test is used to determine the importance of differences. The Wilcoxon signed-
rank test is a non-parametric statistical hypothesis test that is used to compare the significance of the
difference between two populations using two matched samples (Conover, 1999). The Wilcoxon test
is used when the differences are non-normally distributed. The metric data for each version are com-
pared to the succeeding versions until a significant difference is discovered. The difference between
the two versions is reported as a significant change. The maximum difference for all metrics is then
used to select the snapshots at which change-proneness prediction models are built using five well-
known classifiers.

DATA COLLECTION
Many previous works have reported on software evolution research (Chatzigeorgiou & Melas, 2012;
Israeli & Feitelson, 2010). Few, however, have reported the evolution regularly as D’Ambros et al.
(2010). The authors gathered biweekly data from five large open-source systems. The systems have
been measured over 90 times, for a total of 180 weeks. The authors compiled a number of metrics
for coupling, cohesion, inheritance, and complexity. The source code was obtained from the system
repositories. Metrics were calculated using FAMIX models generated by the Moose tool.

Collecting bi-weekly snapshots of the systems for more than 90 snapshots is a time-consuming task,
so the work is restricted to only five systems. These are large systems that are representative of other
large systems.

• Eclipse JDT Core: Metrics were collected for 91 bi-weekly versions of the system. JDT Core is
the Java infrastructure of the Java IDE. More information on JDT core is provided on the
official website https://www.eclipse.org/jdt/core/

• Eclipse PDE UI: Metrics were collected for 97 bi-weekly versions of the system. The PDE
UI provides tool sets to help in all development activities of Eclipse components. More in-
formation on PDE is provided on the official website https://www.eclipse.org/pde/pde-ui/

• Equinox Framework: Metrics were collected for 91 bi-weekly versions of the system. Equinox
is mainly used for developing and delivering the OSGi framework implementation for all
Eclipse products. More information on Equinox is provided on the official website
http://www.eclipse.org/equinox/framework/

• Lucene: Metrics were collected for bi-weekly versions of the system. Lucene is a free and
open-source information retrieval software library, originally written completely in Java.
More information on Lucene is provided on the official website https://lucene.apache.org/

• Mylyn: metrics were collected for 98 bi-weekly versions of the system. Mylyn is an application lifecycle
management framework for Eclipse. More information on Mylyn is provided on the official website
http://www.eclipse.org/mylyn/

https://www.eclipse.org/jdt/core/
https://www.eclipse.org/pde/pde-ui/
http://www.eclipse.org/equinox/framework/
https://lucene.apache.org/
http://www.eclipse.org/mylyn/

Predicting Software Change-Proneness

776

SOFTWARE METRICS
In this section, the change-proneness redefinition is discussed, and the OO metrics are described.
The change-proneness is defined in previous works as the median of differences between any con-
secutive releases of software. If the differences are larger than the median, then the instance is la-
beled as 1, otherwise as 0. This process is repeated for all instances in the second release. However, in
this work, the statistical significance of the difference between consecutive releases or snapshots are
added to the definition of change-proneness. This methodology works for either releases or snap-
shots of software. Then the median of the differences is used to mark an instance as change-prone if
the changes are larger than the median of change.

The Chidamber and Kemerer (CK) suite assesses the internal quality of a software product (Chidam-
ber & Kemerer, 1994). These metrics assess object-oriented software written in languages such as
Java or C++. The six quality properties measured by the CK suite are coupling, cohesion, inheritance
depth and breadth, class responsibility, and complexity. The CK metrics are defined as follows:

• Coupling Between Objects (CBO): The number of couplings between classes is counted by the
CBO. CBO for each class is calculated by counting the other classes that are coupled to it.

• Response for Class (RFC): The RFC metric counts a class’s responsibility set, which is repre-
sented by the number of local methods and called methods.

• Weighted Methods per Class (WMC): The WMC measures class complexity. The complexity of a
class is determined by adding the complexity of its methods.

• Depth of Inheritance Hierarchy (DIT): The number of classes descended from the inheritance’s
root.

• Number of Children (NOC): The NOC metric counts the classes that directly inherit a class.
The number of children in a class indicates the number of specializations and uses. As a re-
sult, understanding all specializations is critical for maintaining and testing the parent.

• Lack of Method Cohesion (LCOM): The LCOM metric assesses interconnection within a class.
The interconnections track how data attributes are used in methods. LCOM is the difference
between pairs of methods that share data attributes (Q) and those that do not (P). The
LCOM is calculated as follows: (P > Q) LCOM? (P - Q): 0. The LCOM metric assesses class
structure cohesion. Low cohesive classes have a wide range of functionalities, making them
difficult to reuse and maintain.

DESCRIPTIVE STATISTICS
Table 2 displays the descriptive statistics for the number of changed classes in the five systems. Col-
umn 2 displays the number of classes at the end of the measured evolution.

Table 2. The change-proneness distribution for all systems

System #Classes SLOC

Domain

Percentage of
changed classes Period Versions

Eclipse JDT 997 >224k Development 64% 1.1.2005 -
6.17.2008 91

Equinox
Framework 324 >39k Library 48% 1.1.2005 -

6.25.2008 91

Apache Lucene 691 >64k Library 46% 1.1.2005 -
10.8.2008 99

Mylyn 1862 >156k Development 47% 1.17.2005 -
3.17.2009 98

Eclipse PDE 1497 >146k Development 73% 1.1.2005 -
9.11.2008 97

Shatnawi

777

In Eclipse JDT, there were 64% changes among these classes. These statistics demonstrate that not
all classes have evolved. Knowing when classes change significantly over time, on the other hand, is
critical for regression testing and change impact analysis. The systems have various sizes as measured
by the number of classes and SLOC. Three systems are software development applications of me-
dium to large, JDT, Mylyn, and PDE, whereas two can be considered small, Equinox and Lucene,
which are software libraries for development. All systems under study are from one domain.

MACHINE LEARNING MODELS AND PERFORMANCE EVALUATION
In this study, I conduct our experiment on five well-known classification techniques. In the following,
a brief description of each technique is provided:

• Logistic Regression: The regression function LR was widely used to predict binary variables.
The LR model is a regression model that works well with binary predictors (Hosmer &
Lemeshow, 2000). The LR model is constructed from a logistic curve as a combination of all
metrics to predict the change-prone class.

• Naïve Bayes (NB): NB is a simple classifier that was commonly used in software quality pre-
diction and has been used as a classifier for defect prediction in many studies (Lessmann et
al., 2008; Menzies et al., 2007). NB is intuitive and simple to build. A naive Bayes classifier is
a supervised learning algorithm based on applying Bayes’ theorem. Naïve Bayes considers
the variables as conditionally independent given the predicted values.

• Nearest neighbor (kNN): Nearest neighbor classification is a type of instance-based learning, and
it simply stores instances of the training data. kNN assigns the dominant label of the closest
group of k objects in the training set. kNN uses the distance (similarity) metric to find the
nearest neighbors and assigns the label that has the majority class (Aha et al., 1991). The
5NN was selected as a classifier that finds the distance with the nearest 5 instances and se-
lects the class with the majority.

• Support Vector Machine (SVM): SVM uses hyperplanes (works even when the data are not line-
arly separable) to find the best function that discriminates between two classes (change-
prone and not change-prone) by maximizing the margin between the two classes. SVM finds
the maximum margin hyperplane that ensures generalizability (Burges, 1998). SVM models
are effective in high-dimensional spaces.

• Decision trees (CART): CART is another classifier that builds decision trees using the Gini di-
versity index. CART predicts classes by learning decision rules inferred from the data set.
The CART grows recursively by partitioning the training data set into subsets with similar
values for the class. The CART algorithm grows the tree by conducting an exhaustive search
of all attributes (i.e., metrics) and all possible splitting values, selecting the split that reduces
impurity in each node (Ebert, 1996).

Measuring the performance of the prediction models is vital to compare the resulting models. There
are many performance measures including accuracy, precision, recall, and F-measure. In comparison,
the results of the F-measure are presented and discussed, which provides a score that incorporates
both precision and recall measures into the individual score. The following is how precision and re-
call are calculated:

Precision = True Positives / (True Positives + False Positives) (1)

Precision is the ratio between the True Positives (instances correctly predicted as change-prone) and
all instances that were predicted as change-prone. The precision measures how many of the found
results are change-prone.

Recall = True Positives / (True Positives + False Negatives) (2)

Predicting Software Change-Proneness

778

The recall measures how a model correctly identifies existing change-prone instances. Thus, for all
the instances that were changed, recall tells us how many I correctly identified as having changed.

The F-measure is the harmonic mean of both the precision and recall and summarizes both values.

F-measure = 2 · Precision · Recall/(Precision + Recall) (3)

RESULTS ANALYSIS
In the following two sections, first, how to find the significant difference between several software
snapshots is provided. The goal is to determine when differences become statistically significant. In
the second section, change-proneness prediction using a variety of machine-learning techniques are
presented.

FINDING CHANGE SIGNIFICANCE
The research questions are answered in the following using both descriptive and statistical methods.

RQ1: Which metrics are more affected by software evolution?

For each release, I count the number of changed files in each metric. As a result, more than 89 values
for each system are studied. Line charts and box plots are the best statistics for analyzing the results.
Figure 1 depicts the evolution of the five systems as line charts. It can discover when significant
changes occur in the system’s evolution using line charts. For example, in Eclipse evolution at period
20, the DIT metric has increased significantly, indicating that 243 classes have changed their inher-
itance depth. The graph shows that metrics change all the time, but the number of affected classes
does not always remain constant. This pattern demonstrates that systems evolve significantly at some
points during the project’s lifespan.

The line chart depicts several Equinox peaks where changes in many metrics are significant. This
graph illustrates how metrics can change simultaneously, i.e., cyclic patterns. The Lucene line chart
shows some peaks where all metrics change, indicating significant changes. The final line chart is for
PDE and shows many fluctuations in the metrics’ evolution. Changes in the evolution of software
have a greater impact on the metrics at certain points in time (peaks in Figure 1) than at others.

Boxplots in Figure 2 depict the range of evolution’s effect on the six metrics. DIT and NOC appear
to be the least affected by evolution. The use of line and box plots together is essential for under-
standing the local points where evolution is important and determining which metrics are more af-
fected by evolution. Among metrics, RFC and WMC are the most affected. Evolution has had the
greatest impact on large classes (i.e., God classes).

https://en.wikipedia.org/wiki/F1_score

Shatnawi

779

Figure 1. The line charts for the five systems

-50
0

50
100
150
200
250
300

1 6 11162126313641465156616671768186

Eclipse evolution

CBO DIT NOC

RFC WMC LCOM

0
20
40
60
80

100
120

1 6 11162126313641465156616671768186

Equinox evolution

CBO DIT NOC

RFC WMC LCOM

0

500

1000

1500

1 7 131925313743495561677379859197

Lucene evolution

CBO DIT NOC

RFC WMC LCOM

0

500

1000

1500

1 6 111621263136414651566166717681869196

Mylyn evolution

CBO DIT NOC

RFC WMC LCOM

0

100

200

300

400

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

PDE evolution

CBO DIT NOC RFC WMC LCOM

Predicting Software Change-Proneness

780

Figure 2. Boxplots for the five systems

Shatnawi

781

RQ2: when does the software quality change significantly?

I used the Wilcoxon signed rank test to determine the difference between the two snapshots in order
to answer this question. The comparison with subsequent snapshots is repeated until a significant dif-
ference is found. The time it takes for differences to become statistically significant is calculated and
reported. Table 3 displays the average number of weeks with significant differences. Based on the re-
sults shown in Table 3, the research questions RQ2.1 to RQ2.6 in numbers are answered. For RQ2.1,
the CBO metric requires 3 to 4 weeks to achieve significant differences, which is considered fast to
change. For RQ2.2, the LCOM metric needs more time to change than CBO but with a slight in-
crease. Therefore, lack of cohesion is fast to change as well. For RQ2.3 and 2.3 for the inheritance
metrics, the change is very slow, which means developers do not change the inheritance depth and
breadth frequently. For example, it takes NOC 18 weeks to achieve significant differences in Equi-
nox. RQ3.5 asked about how the responsibilities of a class have changed. The responsibility set
changes frequently. RQ2.6 asks about how significant the changes in the complexity of classes. The
complexity shows the most frequency of change as the responsibility of a class.

Table 3. The average number of bi-weeks to reach significant differences

 CBO LCOM DIT NOC RFC WMC
Eclipse 2.02 2.23 7.83 6.77 1.39 1.34
Equinox 3.35 3.88 8.95 9.00 3.21 2.95
Lucene 2.56 3.11 3.34 3.03 2.86 2.60
Mylyn 1.26 1.30 1.98 1.80 1.30 1.17
PDE 1.46 1.71 2.27 2.36 1.41 1.43

Box plots, in Figure 3, depict which metrics achieve the fastest significant differences. Knowing
which metrics are affected first provides software engineers with insights into how software evolves
and how object-oriented design is maintained. It can be seen that inheritance hierarchies are slower to
change and thus have the least impact among object-oriented metrics. Many previous works have
shown that the inheritance metrics have lower prediction performance for fault prediction (e.g.,
Shatnawi & Mishra, 2021). DIT and NOC require the most weeks to achieve significant differences.
These metrics are not as frequently updated as other metrics. The complexity and responsibilities of
a class are the most frequently changed. Therefore, they are supposed to have more effect on soft-
ware quality. These metrics measure the internal properties of a class. The coupling and cohesion
measures change significantly every four weeks on average and these metrics also have fast change
but less than the responsibilities and complexity of a class.

Predicting Software Change-Proneness

782

Figure 3. Boxplots for the significance of change measured biweekly

CHANGE-PRONENESS PREDICTION
Change-proneness prediction is critical for engineers to predict which classes are more prone to
changes, allowing for more effective and efficient resource allocation for future maintenance. The re-
search questions specified the number of weeks required to achieve significant changes. I use 18
weeks to divide the data sets into training and testing datasets. As a result, I have ten snapshots to
consider as significant software evolution. Changes from the previous snapshot are calculated for
each snapshot, and a class is labeled as change-prone if it was changed more than the median of
changes for all classes in a system. Table 4 displays the ten snapshots, as well as the percentage of
change-prone classes identified in each. For example, at snapshot 9 (after 18 weeks), I discovered that
a large proportion of classes in Eclipse (36%), PDE (50%), and Equinox (62%) were change-prone.
Lucene and Mylyn were discovered unaltered until after snapshot 36. As a result, several prediction
models were created at regular intervals for each system (18 weeks or 9 biweekly snapshots).

For each system, I have ten snapshots. To develop and test prediction models. Models were trained
on each snapshot and tested for their ability to predict the change-prone classes in the following

Shatnawi

783

snapshot. As a result, I have nine models for each classifier and system. Tables 5, 6, 7, 8, and 9 show
the results of change-propones predictions for the five systems, respectively. The results of the five
classifiers are presented in each table. For all five classifier snapshots, the F-measure values for
Eclipse, PDE, and Equinox are large as shown in Tables 5, 6, and 7, respectively. I notice that predic-
tion performance is lower for early snapshots and improves for later snapshots. This is more noticea-
ble in the Mylyn system as shown in Table 9. As a result, I can conclude that knowing when to make
significant changes can lead to improved performance in change-proneness models. With high preci-
sion or recall, these models predict the change in the next snapshot.

Table 4. Statistics of change-prone classes among selected snapshots (biweekly)

System R9 R18 R27 R36 R45 R54 R63 R72 R81 R90
Eclipse #classes 874 882 921 935 944 950 952 954 963 997
 %change-

prone 36% 22% 31% 34% 16% 19% 23% 12% 20% 21%
PDE #classes 800 813 944 1066 1181 1292 1340 1420 1474 1494
 %change-

prone 50% 26% 40% 39% 27% 30% 35% 25% 56% 13%
Equinox #classes 186 194 194 225 224 271 271 290 302 324
 %change-

prone 62% 54% 28% 47% 17% 36% 17% 23% 18% 24%
Lucene #classes 344 344 344 511 511 572 641 694 563 615
 %change-

prone 0% 0% 0% 47% 0% 18% 19% 20% 19% 19%
Mylyn #classes 0 0 0 0 1077 1211 1309 1437 1702 1863
 %change-

prone 0 0 0 0 100% 37% 49% 52% 36% 27%

Table 5. F-measure values for the five classifiers for Eclipse snapshots

Training Testing LR NB KNN SVM DT

9 18 89% 89% 80% 89% 80%
18 27 85% 84% 82% 83% 82%
27 36 83% 83% 81% 81% 81%
36 45 91% 91% 82% 92% 81%
45 54 91% 90% 87% 90% 88%
54 63 89% 88% 86% 88% 87%
63 72 94% 94% 88% 94% 88%
72 81 90% 90% 89% 89% 89%
81 90 90% 89% 86% 89% 86%

Predicting Software Change-Proneness

784

Table 6. F-measure values for the five classifiers for PDE snapshots

Training Testing LR NB KNN SVM DT

9 18 77% 84% 71% 77.0% 73.9%
18 27 76% 75% 71% 72.8% 71.8%
27 36 77% 76% 67% 71.4% 69.4%
36 45 79% 82% 69% 74.5% 71.4%
45 54 83% 82% 77% 79.1% 77.8%
54 63 81% 81% 71% 75.8% 73.5%
63 72 82% 84% 75% 79.0% 76.8%
72 81 62% 64% 60% 62.0% 61.0%
81 90 69% 86% 63% 73.0% 67.8%

Table 7. F-measure values for the five classifiers for Equinox snapshots

Training Testing LR NB KNN SVM
Decision
Trees

9 18 57% 69% 57% 22.0% 58%
18 27 78% 83% 65% 79.8% 65%
27 36 72% 73% 70% 72.2% 66%
36 45 82% 89% 71% 85.6% 71%
45 54 80% 80% 76% 79.4% 77%
54 63 91% 90% 76% 88.9% 77%
63 72 89% 88% 85% 87.9% 85%
72 81 91% 89% 85% 91.2% 86%
81 90 88% 88% 82% 87.0% 83%

Table 8. F-measure values for the five classifiers for Lucene snapshots

Training Testing LR NB KNN SVM DT
54 63 89.5% 87% 83% 90% 84%
63 72 89.3% 88% 83% 89% 83%
72 81 89.6% 88% 83% 90% 84%
81 90 89.3% 88% 84% 89% 85%

Table 9. F-measure values for the five classifiers for Mylyn snapshots

Training Testing L.R NB KNN SVM DT
54 63 71% 70% 66.1% 69% 66%
63 72 67% 66% 63.2% 63% 63%
72 81 67% 76% 60.6% 73% 62%
81 90 82% 83% 74.6% 85% 75%

DISCUSSION OF RESULTS
The proposed work is different from previous literature in many folds:

i. The metrics are measured bi-weekly for the systems under investigation. In addition, a
snapshot can be considered for different types of versioning including a regular candi-

Shatnawi

785

date, or milestone release. Therefore, the dependent variable (change-proneness) is de-
fined with the help of a statistical method to determine the significance of differences
between biweekly snapshots. The change-proneness is not measured until there is a sig-
nificance of the change.

ii. Metrics are validated individually using evolution and statistical tests to understand how
strongly they are affected by evolution and therefore they have more correlation with
change.

iii. The validation of the results is consistent with how the change-proneness is defined.
The models are trained on a snapshot and tested on the next snapshot for better gener-
alizability of the models.

In comparison with the previous works on software evolution, the focus was on the magnitude and
direction of the growth of large systems only such as Linux systems (Chatzigeorgiou & Melas, 2012;
Israeli & Feitelson, 2010; Mens & Demeyer, 2008). In this research, the evolution of software is
measured, so the work aims to understand the evolution from a different perspective. The work in-
vestigates and finds when differences become statistically significant, and studies different OO prop-
erties such as coupling, cohesion, complexity, and inheritance instead of merely studying the size of
software using LOC. The findings are also consistent with previous works. It advises using coupling,
cohesion, and complexity more than inheritance metrics as they do not change frequently unless the
software is measured for longer periods. For the aim of building a change prediction model, a split at
18 weeks is selected to split data into training and testing datasets. The results of the models were ex-
cellent when measured using F-measure scores. Therefore, the proposed research questions are an-
swered.

In comparison with previous literature (Malhotra & Khanna, 2019), the results in this work use F-
measure while most previous works report accuracy and AUC scores. The models have a very good
score for most models. It is also observed that the models’ performance improves for later snapshots
as shown in the results.

THREATS TO VALIDITY
Construct validity is concerned with the validity of the data sets. The data sets are open-source and
can be validated by other researchers. An open-source tool was used to measure the software metrics,
which can be used for other purposes. The metrics are calculated every two weeks, which is sufficient
for answering the research questions. However, how a metric tool defines and calculates metrics
could be a concern as there might be slight to large differences among different tools. In addition,
the definition of change-proneness is more generic and can be used for both a snapshot or a release
(or candidate release or milestone).

Internal validity is the extent to which research questions are answered by data sets under investiga-
tion. Although investigating five systems, they are large and represent both open-source and com-
mercial systems. These systems are widely used in both open-source and industrial settings.

External validity is concerned with the extent to which the findings and conclusions can be general-
ized to other types of systems. The systems are written in Java, and the results can be applied to
other object-oriented applications. However, because these systems are built using the object-ori-
ented methodology, the findings of this study may not be applicable to other methodologies, such as
procedural and aspect-oriented. In addition, all systems are from one domain, i.e., development sys-
tems, which makes the results generalizable to these types of systems. However, these are complex
systems, and usually, this applies to similar domains.

Predicting Software Change-Proneness

786

CONCLUSION
Software evolution is important because it persists after production. This evolution affects the
change-proneness of classes and predicting which classes are going to change in the future is im-
portant in software project management. In addition, the evolution patterns in software reveal a lot
about the system’s quality. Understanding the evolution of software is critical to understanding the
future of software production activities such as regression testing. Therefore, the evolution of five
large open-source systems is studied in order to understand software evolution and how it affects
changes in software. Therefore, change-proneness is redefined from studying software evolution. A
change-proneness variable is proposed that is derived from changes on many snapshots for a long
time. The change-proneness is considered only for the snapshots that become statistically different as
tested using the Wilcoxon test. Then ML models are built for change-proneness prediction using ob-
ject-oriented metrics and tested on the next snapshot. CK metrics were chosen as a well-known suit
and a representative of software metrics that measure different aspects of software structure and
thus represent different software qualities. To achieve these objectives, more than 89 measurements
were taken at biweekly intervals on the systems under investigation. Therefore, the experiment was
repeated many times in this interval. Each time differences were found, the change-proneness was
trained and tested on the next different snapshot.

First, to understand the impact of evolution on software metrics, line charts, and boxplots were used.
The findings of this study show that object-oriented metrics can be used to study software evolution.
Peaks in line charts show metrics changing significantly over short time periods but less so over
longer time periods. The metrics do not demonstrate the same degree of change. Other metrics
evolve faster than inheritance metrics. The metrics do not have to change at the same time, and peaks
for the same metrics may coincide, indicating large updates.

The systems evolved on a regular basis, but the impact of changes requires at least three weeks for
most metrics and more for inheritance metrics. The findings of this study shed more light on the
evolution of software structure. The results show that studying software growth solely through lines
of code is insufficient and that other metrics must be considered when studying software evolution.
Knowing when software properties like coupling, cohesion, size, and complexity change will drive
effort estimation for software engineering activities and aid in the planning of future software re-
leases, as well as how testing like regression testing and maintenance activities like refactoring can be
directed. Therefore, this analysis answers RQ1. Using this methodology, it is known when changes
become significant, which metrics become significantly changed faster, and the appropriate time for
each metric change is known. Based on these results, change-prediction models were trained and
tested appropriately at the suggested intervals and the results of the ML models were satisfying and
good enough for most systems

For future work, I aim to study ensemble learning in change-proneness and compare different mod-
els of ensembles. As found by a systematic review study of ensemble techniques for software defect
and change prediction (Khanna, 2022), there is a need for more studies on ensemble learning for
both fault-proneness and change-proneness prediction. In a systematic mapping study on change im-
pact analysis, Kretsou et al. (2021) found that change-proneness prediction and its effect on change
impact analysis is not fully explored.

AVAILABILITY OF DATA
The authors confirm that the data supporting the findings of this study are available within the work
of D’Ambros et al. (2010) and its supplementary materials. The original datasets are publicly available
at https://bug.inf.usi.ch/index.php

https://bug.inf.usi.ch/index.php

Shatnawi

787

REFERENCES
Abbas, R., Albalooshi, F. A., & Hammad, M. (2020, December). Software change proneness prediction using

machine learning. Proceedings of the International Conference on Innovation and Intelligence for Informat-
ics, Computing and Technologies, Sakheer, Bahrain. https://doi.org/10.1109/3ICT51146.2020.9311978

Agrawal, A., & Singh, R. K. (2020). Predicting co-change probability in software applications using historical
metadata. IET Software, 14(7), 739–747. https://doi.org/10.1049/iet-sen.2019.0368

Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6, 37–66.
https://doi.org/10.1007/BF00153759

Alsolai, H., & Roper, M. (2022). The impact of ensemble techniques on software maintenance change predic-
tion: An empirical study. Applied Sciences, 12(10), 5234. https://doi.org/10.3390/app12105234

Arisholm, E., Briand, L., & Føyen, A. (2004). Dynamic coupling measurement for object-oriented software.
IEEE Transactions on Software Engineering, 30(8), 491–506. https://doi.org/10.1109/TSE.2004.41

Bansal, A., Madaan, V., Gaur, R., & Shakya, R. (2022, February). Cross-project change-proneness prediction
with selected source project. Proceedings of the International Conference on Innovative Trends in Information Technol-
ogy, Kottayam, India. https://doi.org/10.1109/ICITIIT54346.2022.9744186

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge
Discovery, 2, 121–167. https://doi.org/10.1023/A:1009715923555

Carr, M., & Wagner, C. (2002). A study of reasoning processes in software maintenance management. Infor-
mation Technology and Management, 3, 181–203. https://doi.org/10.1023/A:1013125112217

Catolino, G., & Ferrucci, F. (2019). An extensive evaluation of ensemble techniques for software change predic-
tion. Journal of Software: Evolution and Process, 31(2), e2156. https://doi.org/10.1002/smr.2156

Catolino, G., Palomba, F., Fontana, F. A., De Lucia, A., Zaidman, A., & Ferrucci, F. (2020). Improving change
prediction models with code smell-related information. Empirical Software Engineering, 25, 49–95.
https://doi.org/10.1007/s10664-019-09739-0

Chatzigeorgiou, A., & Melas, G. (2012, June). Trends in object-oriented software evolution: Investigating net-
work properties. Proceedings of the 34th International Conference on Software Engineering, Zurich, Switzerland, 1309–
1312. https://doi.org/10.1109/ICSE.2012.6227092

Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object-oriented design. IEEE Transactions on Soft-
ware Engineering, 20(6), 476–493. https://doi.org/10.1109/32.295895

Conover, W. J. (1999). Practical nonparametric statistics (3rd ed.). Wiley.

D’Ambros, M., Lanza, M., & Robbes, R. (2010, May). An extensive comparison of bug prediction approaches.
Proceedings of the 7th IEEE Working Conference on Mining Software Repositories, Cape Town, South Africa, 31–41.
https://doi.org/10.1109/MSR.2010.5463279

de Carvalho Silva, R., Farah, P., & Vergilio, S. R. (2022). Machine learning for change-prone class prediction: A
history-based approach. Proceedings of the XXXVI Brazilian Symposium on Software Engineering, 289–298.
https://doi.org/10.1145/3555228.3555249

Ebert, C. (1996). Classification techniques for metric-based software development. Software Quality Journal, 5,
255–272. https://doi.org/10.1007/BF00209184

Elish, M., Aljamaan, H., & Ahmad, I. (2015). Three empirical studies on predicting software maintainability us-
ing ensemble methods. Soft Computing, 19, 2511–2524. https://doi.org/10.1007/s00500-014-1576-2

Erlikh, L. (2000). Leveraging legacy system dollars for e-business. IT Professional, 2(3), 17–23.
https://doi.org/10.1109/6294.846201

Giger, E., Pinzger, M., & Gall, H. C. (2012, June). Can we predict types of code changes? An empirical analysis.
Proceedings of the 9th IEEE Working Conference on Mining Software Repositories, Zurich, Switzerland, 217–226.
https://doi.org/10.1109/MSR.2012.6224284

https://doi.org/10.1109/3ICT51146.2020.9311978
https://doi.org/10.1049/iet-sen.2019.0368
https://doi.org/10.1007/BF00153759
https://doi.org/10.3390/app12105234
https://doi.org/10.1109/TSE.2004.41
https://doi.org/10.1109/ICITIIT54346.2022.9744186
https://doi.org/10.1007/s10664-019-09739-0
https://doi.org/10.1109/ICSE.2012.6227092
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/MSR.2010.5463279
https://doi.org/10.1145/3555228.3555249
https://doi.org/10.1007/s00500-014-1576-2
https://doi.org/10.1109/6294.846201
https://doi.org/10.1109/MSR.2012.6224284

Predicting Software Change-Proneness

788

Giray, G., Ebo Bennin, K., Köksal, Ö., Babur, Ö., & Tekinerdogan, B. (2023). On the use of deep learning in
software defect prediction. Journal of Systems and Software, 195, 111537.
https://doi.org/10.1016/j.jss.2022.111537

Herraiz, I., Rodriguez, D., Robles, G., & Gonzalez-Barahona, J. M. (2013). The evolution of the laws of soft-
ware evolution: A discussion based on a systematic literature review. ACM Computing Survey, 46(2), Article
28. https://doi.org/10.1145/2543581.2543595

Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). Wiley.
https://doi.org/10.1002/0471722146

Illes-Seifert, T., & Paech, B. (2010). Exploring the relationship of a file’s history and its fault-proneness: An em-
pirical method and its application to open-source programs. Information & Software Technology, 52(5), 539–
558. https://doi.org/10.1016/j.infsof.2009.11.010

Israeli, A., & Feitelson, D. G. (2010). The Linux kernel as a case study in software evolution. Journal of Systems
and Software, 83(3), 485–501. https://doi.org/10.1016/j.jss.2009.09.042

Kaur, A., Kaur, K., & Kaur, H. (2016). Application of machine learning on process metrics for defect predic-
tion in mobile application. In S. Satapathy, J. Mandal, S. Udgata, & V. Bhateja (Eds.), Information systems de-
sign and intelligent applications (pp. 81–98). Springer. https://doi.org/10.1007/978-81-322-2755-7_10

Kemerer, C. F., & Slaughter, S. (1999). An empirical approach to studying software evolution. IEEE Transactions
on Software Engineering, 25(4), 493–509. https://doi.org/10.1109/32.799945

Khanna, M. (2022). A systematic review of ensemble techniques for software defect and change prediction. e-
Informatica Software Engineering Journal, 16(1), 220105. https://doi.org/10.37190/e-Inf220105

Koru, A. G., & Tian, J. (2005). Comparing high-change modules and modules with the highest measurement
values in two large-scale open-source products. IEEE Transactions on Software Engineering, 31(8), 625–642.
https://doi.org/10.1109/TSE.2005.89

Kretsou, M., Arvanitou, E.-M., Ampatzoglou, A., Deligiannis, I., & Gerogiannis, V. C. (2021). Change impact
analysis: A systematic mapping study. Journal of Systems and Software, 174, 110892.
https://doi.org/10.1016/j.jss.2020.110892

Kumar, L., Rath, S. K., & Sureka, A. (2017). Using source code metrics to predict change-prone web services:
A case-study on eBay services. 2017 IEEE Workshop on Machine Learning Techniques for Software Quality Evalu-
ation (MaLTeSQuE), Klagenfurt, Austria, 1-7. https://doi.org/10.1109/MALTESQUE.2017.7882009

Kumar, P., Singh, S. N., & Dawra, S. (2022). Software component reusability prediction using extra tree classi-
fier and enhanced Harris hawks optimization algorithm. International Journal of System Assurance Engineering
and Management, 13, 892–903. https://doi.org/10.1007/s13198-021-01359-6

Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008). Benchmarking classification models for software de-
fect prediction: A proposed framework and novel findings. IEEE Transactions on Software Engineering, 34(4),
485–496. https://doi.org/10.1109/TSE.2008.35

Lindvall, M. (1998). Are large C++ classes change-prone? An empirical investigation. Software Practice and Expe-
rience, 28(15), 1551–1558. https://doi.org/10.1002/(SICI)1097-024X(19981225)28:15<1551::AID-
SPE212>3.0.CO;2-0

Liu, C., Yang, D., Xia, X., Yan, M., & Zhang, X. (2018). Cross-project change-proneness prediction. 2018
IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 2018, pp. 64-73,
https://doi.org/10.1109/COMPSAC.2018.00017

Lu, H., Zhou, Y., Xu, B., Leung, H., & Chen, L. (2012). The ability of object-oriented metrics to predict
change-proneness: A meta-analysis. Empirical Software Engineering, 17, 200–242.
https://doi.org/10.1007/s10664-011-9170-z

Malhotra, R., & Jangra, R. (2017). Prediction and assessment of change prone classes using statistical and ma-
chine learning techniques. Journal of Information Processing Systems, 13(4), 778–804.
https://doi.org/10.3745/JIPS.04.0013

https://doi.org/10.1016/j.jss.2022.111537
https://doi.org/10.1145/2543581.2543595
https://doi.org/10.1002/0471722146
https://doi.org/10.1016/j.infsof.2009.11.010
https://doi.org/10.1016/j.jss.2009.09.042
https://doi.org/10.1007/978-81-322-2755-7_10
https://doi.org/10.1109/32.799945
https://doi.org/10.37190/e-Inf220105
https://doi.org/10.1109/TSE.2005.89
https://doi.org/10.1016/j.jss.2020.110892
https://doi.org/10.1109/MALTESQUE.2017.7882009
https://doi.org/10.1007/s13198-021-01359-6
https://doi.org/10.1109/TSE.2008.35
https://doi.org/10.1002/(SICI)1097-024X(19981225)28:15%3c1551::AID-SPE212%3e3.0.CO;2-0
https://doi.org/10.1002/(SICI)1097-024X(19981225)28:15%3c1551::AID-SPE212%3e3.0.CO;2-0
https://doi.org/10.1109/COMPSAC.2018.00017
https://doi.org/10.1007/s10664-011-9170-z
https://doi.org/10.3745/JIPS.04.0013

Shatnawi

789

Malhotra, R., Kapoor, R., Aggarwal, D., & Garg, P. (2021, May). Comparative study of feature reduction tech-
niques in software change prediction. Proceedings of the IEEE/ACM 18th International Conference on Mining
Software Repositories, Madrid, Spain, 18–28. https://doi.org/10.1109/MSR52588.2021.00015

Malhotra, R., & Khanna, M. (2019). Software change prediction: A systematic review and future guidelines. e-
Informatica Software Engineering Journal, 13(1), 227–259. https://doi.org/10.5277/e-Inf190107

Mens, T., & Demeyer, S. (Eds.). (2008). Software evolution. Springer. https://doi.org/10.1007/978-3-540-76440-3

Menzies, T., Greenwald, J., & Frank, A. (2007). Data mining static code attributes to learn defect predictors.
IEEE Transactions on Software Engineering, 33(1), 2–13. https://doi.org/10.1109/TSE.2007.256941

Rajlich, V. (2014). Software evolution and maintenance. Proceedings of the Future of Software Engineering (pp. 133–
144). ACM. https://doi.org/10.1145/2593882.2593893

Shatnawi, R., & Mishra, A. (2021). An empirical study on software fault prediction using product and process
metrics. International Journal of Information Technologies and Systems Approach, 14(1), 62–78.
https://doi.org/10.4018/IJITSA.2021010104

Singh, R. K., & Agrawal, A. (2023). Identification and analysis of change ripples in object-oriented software
applications. Sādhanā, 48, Article 95. https://doi.org/10.1007/s12046-023-02137-9

Témolé, F., & Atanasova, D. (2023, May). Role, importance and significance of software quality. Proceedings of the
46th MIPRO ICT and Electronics Convention, Opatija, Croatia, 1658–1663, https://doi.org/10.23919/MI-
PRO57284.2023.10159733

Wermelinger, M., Yu, Y., & Lozano, A. (2008, September). Design principles in architectural evolution: A case
study. Proceedings of the 24th IEEE International Conference on Software Maintenance, Beijing, China, 396–405.
https://doi.org/10.1109/ICSM.2008.4658088

Xie, H., Yang, J., Chang, C. K., & Liu, L. (2017). A statistical analysis approach to predict user’s changing re-
quirements for software service evolution. Journal of Systems and Software, 132, 147–164.
https://doi.org/10.1016/j.jss.2017.06.071

Xing, Z., & Stroulia, E. (2004, June). Understanding class evolution in object-oriented software. Proceedings of the
12th IEEE International Workshop on Program Comprehension, Bari, Italy, 34–43.
https://doi.org/10.1109/WPC.2004.1311045

Yan, M., Zhang, X., Liu, C., Xu, L., Yang, M., & Yang, D. (2017). Automated change-prone class prediction on
unlabeled dataset using unsupervised method. Information and Software Technology, 92, 1–16.
https://doi.org/10.1016/j.infsof.2017.07.003

Yu, L., & Mishra, A. (2013). An empirical study of Lehman’s law on software quality evolution. International Jour-
nal of Software and Informatics, 7(3), 469–481.

Zhu, X., He, Y., Cheng, L., Jia, X., & Zhu, L. (2018). Software change-proneness prediction through combina-
tion of bagging and resampling methods. Journal of Software: Evolution and Process, 30(12), e2111.
https://doi.org/10.1002/smr.2111

Zhu, X., Li, N., & Wang, Y. (2022). Software change‐proneness prediction based on deep learning. Journal of
Software: Evolution and Process, 34(4), e2434. https://doi.org/10.1002/smr.2434

https://doi.org/10.1109/MSR52588.2021.00015
https://doi.org/10.5277/e-Inf190107
https://doi.org/10.1007/978-3-540-76440-3
https://doi.org/10.1109/TSE.2007.256941
https://doi.org/10.1145/2593882.2593893
https://doi.org/10.4018/IJITSA.2021010104
https://doi.org/10.1007/s12046-023-02137-9
https://doi.org/10.23919/MIPRO57284.2023.10159733
https://doi.org/10.23919/MIPRO57284.2023.10159733
https://doi.org/10.1109/ICSM.2008.4658088
https://doi.org/10.1109/WPC.2004.1311045
https://doi.org/10.1016/j.infsof.2017.07.003
https://doi.org/10.1002/smr.2111
https://doi.org/10.1002/smr.2434

Predicting Software Change-Proneness

790

AUTHOR
Raed Shatnawi received an MSc degree in software engineering and a
Ph.D. degree in computer science from the University of Alabama in
Huntsville. I am currently a full professor in the Department of Software
Engineering at Jordan University of Science and Technology. I have
published many papers in highly-ranked journals and conferences. I have
reviewed papers for many reputed journals, and international
conferences. My main interests are in software metrics, software
refactoring, software maintenance, software security analysis, and open-
source systems development. I was listed among the top 2% of

researchers based on a study by Stanford University research.

	Predicting Software Change-Proneness From Software Evolution Using Machine Learning Methods
	Abstract
	Introduction
	Related Work
	Research Methodology
	Data Collection
	Software Metrics
	Descriptive Statistics
	Machine Learning Models and Performance Evaluation

	Results Analysis
	Finding Change Significance
	Change-Proneness Prediction
	Discussion of Results

	Threats to Validity
	Conclusion
	Availability of Data

	References
	Author

